The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
This paper develops a WebGIS\|based GPS vehicle monitoring system with typical three\|tier application architecture of B/S pattern. It provides ordinary registered users with a valid and convenient means to get access...This paper develops a WebGIS\|based GPS vehicle monitoring system with typical three\|tier application architecture of B/S pattern. It provides ordinary registered users with a valid and convenient means to get access to real\|time GPS location information of certain moving vehicles at any place, and further offers a powerful tool for super users to manage user information and remotely monitor those vehicles and provide corresponding services timely if necessary. The system architecture, function modules, key technologies and application interfaces are given. Finally, the validity of our system is demonstrated in practical cases.展开更多
In this paper the geographical information system (GIS) is applied to earthquake and tsunami emergency work and an earthquake and tsunami emergency command system (ETECS) for seaside cities is developed which is c...In this paper the geographical information system (GIS) is applied to earthquake and tsunami emergency work and an earthquake and tsunami emergency command system (ETECS) for seaside cities is developed which is composed of a basic database and six subsystems. By employing this system, the responsible municipal departments can make rapid prediction before the occurrence of earthquake or tsunami, make commanding decisions concerning the disaster-fight during the disastrous event, and make rapid estimates of the casualties and economic losses. So that the government could conduct relief work in time and planning for future disaster reduction and prevention.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory o...Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.展开更多
One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a so...One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.展开更多
An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-...An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-wave interference(CWI)in unified carrier telemetry,tracking,and command(TT&C)systems.With subcarrier modulation index as a priori condition,the existence of CWI is determined by comparing the energy center with the symmetric center.In the presence of interference,the interference frequency point is assumed and culled;sequentially,the spectral symmetry is used to verify whether the signal acquisition is realized.Theoretical analysis,simulations,and experimental results demonstrate that the method can realize the acquisition of the main carrier target signal with an interference-to-signal ratio of 31 dB,which represents an improvement over the existing continuous-wave interference mitigation for acquisition methods.展开更多
To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corres...To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.展开更多
This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second pap...This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second paper presents the flight test results. As shown in this paper, the central command architecture consists of a central command block, an autonomous planning block, and an autonomous flight controls block. The central command block includes a staging process that converts an objective into tasks independent of the vehicle (agent). The autonomous planning block contains a non-iterative sequence of algorithms that govern routing, vehicle assignment, and deconfliction. The autonomous flight controls block employs modern controls principles, dividing the control input into a guidance part and a regulation part. A novel feature of high-order central command, as this paper shows, is the elimination of operator-directed vehicle tasking and the manner in which deconfliction is treated. A detailed example illustrates different features of the architecture.展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a...Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.展开更多
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
文摘This paper develops a WebGIS\|based GPS vehicle monitoring system with typical three\|tier application architecture of B/S pattern. It provides ordinary registered users with a valid and convenient means to get access to real\|time GPS location information of certain moving vehicles at any place, and further offers a powerful tool for super users to manage user information and remotely monitor those vehicles and provide corresponding services timely if necessary. The system architecture, function modules, key technologies and application interfaces are given. Finally, the validity of our system is demonstrated in practical cases.
文摘In this paper the geographical information system (GIS) is applied to earthquake and tsunami emergency work and an earthquake and tsunami emergency command system (ETECS) for seaside cities is developed which is composed of a basic database and six subsystems. By employing this system, the responsible municipal departments can make rapid prediction before the occurrence of earthquake or tsunami, make commanding decisions concerning the disaster-fight during the disastrous event, and make rapid estimates of the casualties and economic losses. So that the government could conduct relief work in time and planning for future disaster reduction and prevention.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金supported by Science Foundation of Dalian Naval Academy
文摘Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.
文摘One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.
基金Supported by the National Natural Science Foundation of China(61401026)
文摘An interference mitigation for acquisition method,based on both energy center and spectrum symmetry detection,has been proposed as a possible solution to the problem of signal acquisition susceptibility to continuous-wave interference(CWI)in unified carrier telemetry,tracking,and command(TT&C)systems.With subcarrier modulation index as a priori condition,the existence of CWI is determined by comparing the energy center with the symmetric center.In the presence of interference,the interference frequency point is assumed and culled;sequentially,the spectral symmetry is used to verify whether the signal acquisition is realized.Theoretical analysis,simulations,and experimental results demonstrate that the method can realize the acquisition of the main carrier target signal with an interference-to-signal ratio of 31 dB,which represents an improvement over the existing continuous-wave interference mitigation for acquisition methods.
基金Funded by National Natural Science Foundation of China under the Grant No.90715036Open Project of Jiangsu Key Laboratory of Structural Engineering (Grant No.ZD1004)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.
文摘This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second paper presents the flight test results. As shown in this paper, the central command architecture consists of a central command block, an autonomous planning block, and an autonomous flight controls block. The central command block includes a staging process that converts an objective into tasks independent of the vehicle (agent). The autonomous planning block contains a non-iterative sequence of algorithms that govern routing, vehicle assignment, and deconfliction. The autonomous flight controls block employs modern controls principles, dividing the control input into a guidance part and a regulation part. A novel feature of high-order central command, as this paper shows, is the elimination of operator-directed vehicle tasking and the manner in which deconfliction is treated. A detailed example illustrates different features of the architecture.
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金supported in part by the National Natural Science Foundation of China under Grant 62203468in part by the Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant Q2023X011+1 种基金in part by the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001in part by the Youth Talent Program Supported by China Railway Society,and in part by the Research Program of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ112.
文摘Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.