An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropag...An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropagation method(3D BPM)is used to optimize the structure parameters of the 90°hybrid.The designed compact structure is demonatrated to have a low excess loss less than-0.15 dB,a high common mode rejection ratio better than 40 dB,and a low relative phase deviation less than±2.5°.The designed hybrid is manufactured on a sandwitched structure deposited on an InP substrate.The measured results show that the common mode rejection ratios are larger than 20 dB in a range from 1520 nm to 1580 nm.The phase deviations are less than±5°in a range from 1545 nm to 1560 nm and less than±7°across the C band.The designed 90°optical hybrid is suitable well for realizing miniaturization,high-properties,and high bandwidth of coherent receiver.展开更多
The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz)....The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.展开更多
The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced ...The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.展开更多
The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as describ...The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.展开更多
The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as describ...The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.展开更多
针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量...针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量,简化价值函数的同时减小共模电压和电流谐波含量;再次,通过计算参考电压矢量直接选择最优电压矢量以减少寻优次数,并引入占空比控制提升电机控制精度,改善电机稳态性能.最后,仿真对比传统模型预测电流控制、RCMV(Reduced Common Mode Voltage)-1、RCMV-2和所提控制方法.结果表明,所提控制方法在减小共模电压的同时,降低了转矩脉动和谐波电流,且较RCMV-2方法开关频率明显降低;此外,寻优代码执行时间相较于RCMV-1和RCMV-2分别降低了约91%和65%,减小了计算量.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402404)the Beijing Natural Science Foundation,China(Grant No.4194093)the National Natural Science Foundation of China(Grant Nos.61635010,61674136,and 61435002).
文摘An InP optical 90°hybrid based on a×4 MMI coupler with a deep ridged waveguide is designed and fabricated.The working principle of the 90°hybrid is systematically introduced.Three-dimensional beam ropagation method(3D BPM)is used to optimize the structure parameters of the 90°hybrid.The designed compact structure is demonatrated to have a low excess loss less than-0.15 dB,a high common mode rejection ratio better than 40 dB,and a low relative phase deviation less than±2.5°.The designed hybrid is manufactured on a sandwitched structure deposited on an InP substrate.The measured results show that the common mode rejection ratios are larger than 20 dB in a range from 1520 nm to 1580 nm.The phase deviations are less than±5°in a range from 1545 nm to 1560 nm and less than±7°across the C band.The designed 90°optical hybrid is suitable well for realizing miniaturization,high-properties,and high bandwidth of coherent receiver.
文摘The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.
文摘The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.
文摘The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.
文摘The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.
文摘针对双三相永磁同步电机模型预测共模电压抑制方法存在寻优计算量大、开关频率较高、稳态性能不佳的问题,提出一种改进型模型预测电流控制.首先,改进六相两电平逆变器,降低零矢量共模电压幅值;其次,选择小共模电压矢量构造虚拟电压矢量,简化价值函数的同时减小共模电压和电流谐波含量;再次,通过计算参考电压矢量直接选择最优电压矢量以减少寻优次数,并引入占空比控制提升电机控制精度,改善电机稳态性能.最后,仿真对比传统模型预测电流控制、RCMV(Reduced Common Mode Voltage)-1、RCMV-2和所提控制方法.结果表明,所提控制方法在减小共模电压的同时,降低了转矩脉动和谐波电流,且较RCMV-2方法开关频率明显降低;此外,寻优代码执行时间相较于RCMV-1和RCMV-2分别降低了约91%和65%,减小了计算量.