The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] = -2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find ...The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] = -2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find that almost all s-elements were made in a single neutron exposure. This star should be a member of a post-commonenvelope binary. After the s-process material has experienced only one neutron exposure in the nucleosynthesis region and is dredged-up to its envelope, the AGB evolution is terminated by the onset of common-envelope evolution. Based on the high radial-velocity of HE 1305-0007, we speculate that the star could be a runaway star from a binary system, in which the AIC event has occurred and produced the r-process elements.展开更多
High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the...High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10373005, 10673002 and 10778616.
文摘The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] = -2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find that almost all s-elements were made in a single neutron exposure. This star should be a member of a post-commonenvelope binary. After the s-process material has experienced only one neutron exposure in the nucleosynthesis region and is dredged-up to its envelope, the AGB evolution is terminated by the onset of common-envelope evolution. Based on the high radial-velocity of HE 1305-0007, we speculate that the star could be a runaway star from a binary system, in which the AIC event has occurred and produced the r-process elements.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0300300,2017YFA0302900,2018YFA0704200 and 2019YFA0308000)the National Natural Science Foundation of China (Grant Nos.11888101,11922414 and11874405)+2 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS (Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences (Grant No.Y18G06)。
文摘High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.