Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offe...Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.展开更多
Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems...Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems to be addressed:supporting both alternating current(AC)and direct current(DC)input,and minimizing the common-mode voltage as well as leakage current for safety reasons.In this paper,a hybrid five-level single-phase rectifier is proposed.A five-level topology is adopted in the upper arm,and a half-bridge diode topology is adopted in the lower arm.A dual closed-loop control strategy and a flying capacitor voltage regulation method are designed accordingly so that the compatibility of both AC and DC input is realized with low common voltage and small passive devices.Simulation and experimental results demonstrate the effectiveness and performance of the proposed rectifier.展开更多
The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced ...The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.展开更多
The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode n...The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode noise of the converter.Traditionally,the measurement method is used for transformer modeling,and a single lumped device is used to establish the transformer model,which cannot be predicted in the transformer design stage.Based on the transformer common-mode noise transmission mechanism,this paper derives the transformer common-mode equivalent capacitance under ideal conditions.According to the principle of experimental measurement of the network analyzer,the electromagnetic field finite element simulation software three-dimensional(3D)modeling and simulation method is used to obtain the two-port parameters of the transformer,extract the high-frequency parameters of the transformer,and establish its electromagnetic compatibility equivalent circuit model.Finally,an experimental prototype is used to verify the correctness of the model by comparing the experimental measurement results with the simulation prediction results.展开更多
Machine stator winding insulation degradation is one of the main results of machine aging.It is non-negligible once this degradation process becomes asymmetric between phases.The traditional way to determine the insul...Machine stator winding insulation degradation is one of the main results of machine aging.It is non-negligible once this degradation process becomes asymmetric between phases.The traditional way to determine the insulation state of health is a partial discharge test.However,this method requires the system offline,which causes production loss and extra administrative burden.This paper presents an idea for better characterizing the insulation machine’s state of health using common-mode(CM)behavior in the machine-drive system.With the help of circuit decomposition methods and modeling tools,the CM quantities due to asymmetric aging show a unique characteristic that distinguishes itself from other differential-mode(DM)quantities in the equivalent circuit.It is shown effective to represent the asymmetric aging effect from the detection of system leakage current.This paper provides an analytical method to quantify this characteristic from mathematical approaches,and a proper approximation has been made on the CM equivalent model(CEM)such that the CM behavior is accurately characterized.The proposed method will serve the purpose of predicting machine abnormal behavior using the simple RLC circuit.Researchers can adapt this method to quantify and characterize the machine insulation state of health(SOH).展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000。
文摘Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.
文摘Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems to be addressed:supporting both alternating current(AC)and direct current(DC)input,and minimizing the common-mode voltage as well as leakage current for safety reasons.In this paper,a hybrid five-level single-phase rectifier is proposed.A five-level topology is adopted in the upper arm,and a half-bridge diode topology is adopted in the lower arm.A dual closed-loop control strategy and a flying capacitor voltage regulation method are designed accordingly so that the compatibility of both AC and DC input is realized with low common voltage and small passive devices.Simulation and experimental results demonstrate the effectiveness and performance of the proposed rectifier.
文摘The balanced operational amplifier including its merits and designing methods is discussed by comparing its performance to a conventional differential output amplifier when used in a single balanced stage. A balanced OTA circuit design is also presented.
文摘The transformer is the key circuit component of the common-mode noise current when an isolated converter is working.The highfrequency characteristics of the transformer have an important influence on the common-mode noise of the converter.Traditionally,the measurement method is used for transformer modeling,and a single lumped device is used to establish the transformer model,which cannot be predicted in the transformer design stage.Based on the transformer common-mode noise transmission mechanism,this paper derives the transformer common-mode equivalent capacitance under ideal conditions.According to the principle of experimental measurement of the network analyzer,the electromagnetic field finite element simulation software three-dimensional(3D)modeling and simulation method is used to obtain the two-port parameters of the transformer,extract the high-frequency parameters of the transformer,and establish its electromagnetic compatibility equivalent circuit model.Finally,an experimental prototype is used to verify the correctness of the model by comparing the experimental measurement results with the simulation prediction results.
文摘Machine stator winding insulation degradation is one of the main results of machine aging.It is non-negligible once this degradation process becomes asymmetric between phases.The traditional way to determine the insulation state of health is a partial discharge test.However,this method requires the system offline,which causes production loss and extra administrative burden.This paper presents an idea for better characterizing the insulation machine’s state of health using common-mode(CM)behavior in the machine-drive system.With the help of circuit decomposition methods and modeling tools,the CM quantities due to asymmetric aging show a unique characteristic that distinguishes itself from other differential-mode(DM)quantities in the equivalent circuit.It is shown effective to represent the asymmetric aging effect from the detection of system leakage current.This paper provides an analytical method to quantify this characteristic from mathematical approaches,and a proper approximation has been made on the CM equivalent model(CEM)such that the CM behavior is accurately characterized.The proposed method will serve the purpose of predicting machine abnormal behavior using the simple RLC circuit.Researchers can adapt this method to quantify and characterize the machine insulation state of health(SOH).