In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati...In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.展开更多
In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The...In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.展开更多
There is growing interest in the integrated sensing and communication(ISAC)to extend the 5G+/6G network capabilities by introducing sensing capability.While the solutions for mono-static or bi-static ISAC have shown f...There is growing interest in the integrated sensing and communication(ISAC)to extend the 5G+/6G network capabilities by introducing sensing capability.While the solutions for mono-static or bi-static ISAC have shown feasibility and benefits based on existing 5G physical layer design,whether and how to coordinate multiple ISAC devices to better exert networking performance are rarely discussed.3 rd Partnership Project(3GPP)has initiated the ISAC use cases study,and the follow-up studies for network architecture could be anticipated.In this article,we focus on gNB-based sensing mode and propose ISAC functional framework with given of highlevel service procedures to enable cellular based ISAC services.In the proposed ISAC framework,three types of network functions for sensing service as Sensing Function(SF),lightweight-Edge Sensing Function(ESF)and full-version-ESF are designed with interaction with network nodes to fulfill the latency requirements of ISAC use cases.Finally,with simulation evaluations and hardware testbed results,we further verify the performance benefit and feasibility to enable ISAC in 5G for the gNB-based sensing mode with new design on SF and related signaling protocols.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network n...In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.展开更多
The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is ...The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.展开更多
An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the sev...An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources.However,the overwhelming ...Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources.However,the overwhelming upload traffic may lead to unacceptable uploading time.To tackle this issue,for tasks taking environmental data as input,the data perceived by roadside units(RSU)equipped with several sensors can be directly exploited for computation,resulting in a novel task offloading paradigm with integrated communications,sensing and computing(I-CSC).With this paradigm,vehicles can select to upload their sensed data to RSUs or transmit computing instructions to RSUs during the offloading.By optimizing the computation mode and network resources,in this paper,we investigate an I-CSC-based task offloading problem to reduce the cost caused by resource consumption while guaranteeing the latency of each task.Although this nonconvex problem can be handled by the alternating minimization(AM)algorithm that alternatively minimizes the divided four sub-problems,it leads to high computational complexity and local optimal solution.To tackle this challenge,we propose a creative structural knowledge-driven meta-learning(SKDML)method,involving both the model-based AM algorithm and neural networks.Specifically,borrowing the iterative structure of the AM algorithm,also referred to as structural knowledge,the proposed SKDML adopts long short-term memory(LSTM)networkbased meta-learning to learn an adaptive optimizer for updating variables in each sub-problem,instead of the handcrafted counterpart in the AM algorithm.Furthermore,to pull out the solution from the local optimum,our proposed SKDML updates parameters in LSTM with the global loss function.Simulation results demonstrate that our method outperforms both the AM algorithm and the meta-learning without structural knowledge in terms of both the online processing time and the network performance.展开更多
Blockchain has brought great potential in improving Space-Air-Ground Integrated Networks(SAGINs)in terms of security and efficiency.In blockchain-integrated SAGINs,many applications and services inherently require bot...Blockchain has brought great potential in improving Space-Air-Ground Integrated Networks(SAGINs)in terms of security and efficiency.In blockchain-integrated SAGINs,many applications and services inherently require both the communication contents and communication behaviors to be secure against eavesdroppers,in which a covert communication algorithm is always deployed as a fundamental communication component.However,existing covert communication schemes suffer from critical problems.On the one hand,they require a sender to locally maintain a cryptographic key for a long period of time,which is very costly and inefficient to renew which means renewing the secret key.On the other hand,the ciphertext of covertly sent data would explicitly appear in the network,and thereby the schemes are vulnerable to secret key breach.In this paper,we propose a secure and efficient covert communication scheme for blockchain-integrated SAGINs,dubbed CC-BSAGINs,to free the sender from maintaining secret keys.The key technique is to map the covertly sent data to some transactions on the underlying blockchain in a secure and efficient way;the mapping information is sent via a covert communication algorithm.Such a two-step mechanism releases the sender from key management and does not require the ciphertext to be communicated.We provide formal security proofs and conduct a comprehensive performance evaluation,which demonstrates the security and efficiency of CC-BSAGINs.展开更多
The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellit...The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.展开更多
The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Ae...The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Aerial networking provides a prom⁃ising solution to flexible,scalable,low-cost and reliable coverage for wireless devices.The integration of aerial network and terrestrial network has been an inevitable paradigm in the 6G era.However,energy-efficient communications and networking among aerial net⁃work and terrestrial network face great challenges.This paper is dedicated to discussing green communications of the air-ground integrated heterogeneous network(AGIHN).We first provide a brief introduction to the characteristics of AGIHN in 6G networks.Further,we analyze the challenges of green AGIHN from the aspects of green terrestrial networks and green aerial networks.Finally,several solutions to and key technologies of the green AGIHN are discussed.展开更多
With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construct...With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construction of digital library has become the focus of digital campus.A set of manageable,authenticated and secure solutions are needed for remote access to make the campus network be a transit point for the outside users.Remote Access IPSEC Virtual Private Network gives the solution of remote access to e-library resources,networks resources and so on very safely through a public network.It establishes a safe and stable tunnel which encrypts the data passing through it with robust secured algorithms.It is to establish a virtual private network in Internet,so that the two long-distance network users can transmit data to each other in a dedicated network channel.Using this technology,multi-network campus can communicate securely in the unreliable public internet.展开更多
According to the characteristics of remote welding, including multiple parameters, real-time, and reliability of long wire transmitting, a distributing computer control scheme is adopted. A serial communication networ...According to the characteristics of remote welding, including multiple parameters, real-time, and reliability of long wire transmitting, a distributing computer control scheme is adopted. A serial communication network between the master and the slavery computers is constructed. A synchro-control network among slavery computers is designed. Uniform message format and communication protocols are made. Considering intensive high-frequency noises at the welding zone, a quadruple check mode, including data sum check, parameter type check, welding parameters check and Exclusive OR ( XOR ) check, is adopted to assure the reliability of communication among multiple computers. Based on disturbing circuit, common circuit and sensitive circuit, the measures are brought forward to ensure the stabilization of communication network of remote arc welding by analyzing the wiring principle of anti-high-frequency interference of system bus, signal wires and shielding twisted-pair(STP) wires. The results provide the theoretical and practical references for the manufacture of remote welding robot and the quality of remote welding.展开更多
With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integra...With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.展开更多
An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are com...An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.展开更多
This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand res...This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand resources(DDRs)into the existing distribution systems.This microgrid module is designed to be portable,scalable,easy to deploy,and simple to operate.The modeling of the proposed microgrid module,based on the IEC 61850 standard,is presented.A novel logical node is introduced,which describes functionalities of the bidirectional interlinking converter(BIC)interfacing AC sub-grid and DC sub-grid in a better way.To achieve the target of plug-and-play functionalities,specific microgrid module communication network(MMCN)and microgrid module operating systems(MMOS)are designed and implemented in the hardware prototype built in the laboratory.Experimental results obtained from the lab prototype clearly validate the effectiveness of the proposed design of the microgrid module,communication network and operating system.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2024ZCJH01in part by the National Natural Science Foundation of China(NSFC)under Grant No.62271081in part by the National Key Research and Development Program of China under Grant No.2020YFA0711302.
文摘In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.
基金financial support of National Natural Science Foundation of China(NSFC),No.U1705263 and 61971102GF Innovative Research Programthe Sichuan Science and Technology Program,No.2019YJ0194。
文摘In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.
文摘There is growing interest in the integrated sensing and communication(ISAC)to extend the 5G+/6G network capabilities by introducing sensing capability.While the solutions for mono-static or bi-static ISAC have shown feasibility and benefits based on existing 5G physical layer design,whether and how to coordinate multiple ISAC devices to better exert networking performance are rarely discussed.3 rd Partnership Project(3GPP)has initiated the ISAC use cases study,and the follow-up studies for network architecture could be anticipated.In this article,we focus on gNB-based sensing mode and propose ISAC functional framework with given of highlevel service procedures to enable cellular based ISAC services.In the proposed ISAC framework,three types of network functions for sensing service as Sensing Function(SF),lightweight-Edge Sensing Function(ESF)and full-version-ESF are designed with interaction with network nodes to fulfill the latency requirements of ISAC use cases.Finally,with simulation evaluations and hardware testbed results,we further verify the performance benefit and feasibility to enable ISAC in 5G for the gNB-based sensing mode with new design on SF and related signaling protocols.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金supported by the National Science Foundation of China under Grant 62001517in part by the Research Project of Space Engineering University under Grants 2020XXAQ01 and 2019XXAQ05,and in part by the Science and Technology Innovation Cultivation Fund of Space Engineering University.
文摘In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.
基金supported by the the National Key Research and Development Program of China under No. 2019YFB1803200National Natural Science Foundation of China under Grants 61620106001。
文摘The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.
基金the National Key Research and Development Program of China under grant 2020YFB1807700the National Natural Science Foundation of China under Grants U1701265,U1809211Key Program of Marine Economy Development,Department of Natural Resources of Guangdong Province under Grant YZRZH[2020]009。
文摘An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
基金supported in part by National Key Research and Development Program of China(2020YFB1807700)in part by National Natural Science Foundation of China(62201414)+2 种基金in part by Qinchuangyuan Project(OCYRCXM-2022-362)in part by Science and Technology Project of Guangzhou(2023A04J1741)in part by Chongqing key laboratory of Mobile Communications Technologg(cqupt-mct-202202).
文摘Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources.However,the overwhelming upload traffic may lead to unacceptable uploading time.To tackle this issue,for tasks taking environmental data as input,the data perceived by roadside units(RSU)equipped with several sensors can be directly exploited for computation,resulting in a novel task offloading paradigm with integrated communications,sensing and computing(I-CSC).With this paradigm,vehicles can select to upload their sensed data to RSUs or transmit computing instructions to RSUs during the offloading.By optimizing the computation mode and network resources,in this paper,we investigate an I-CSC-based task offloading problem to reduce the cost caused by resource consumption while guaranteeing the latency of each task.Although this nonconvex problem can be handled by the alternating minimization(AM)algorithm that alternatively minimizes the divided four sub-problems,it leads to high computational complexity and local optimal solution.To tackle this challenge,we propose a creative structural knowledge-driven meta-learning(SKDML)method,involving both the model-based AM algorithm and neural networks.Specifically,borrowing the iterative structure of the AM algorithm,also referred to as structural knowledge,the proposed SKDML adopts long short-term memory(LSTM)networkbased meta-learning to learn an adaptive optimizer for updating variables in each sub-problem,instead of the handcrafted counterpart in the AM algorithm.Furthermore,to pull out the solution from the local optimum,our proposed SKDML updates parameters in LSTM with the global loss function.Simulation results demonstrate that our method outperforms both the AM algorithm and the meta-learning without structural knowledge in terms of both the online processing time and the network performance.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB3106500in part by the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST)under Grant 2022QNRC001in part by the Sichuan Science and Technology Program under Grant 2022ZDZX0038 and Grant2023ZYD0142
文摘Blockchain has brought great potential in improving Space-Air-Ground Integrated Networks(SAGINs)in terms of security and efficiency.In blockchain-integrated SAGINs,many applications and services inherently require both the communication contents and communication behaviors to be secure against eavesdroppers,in which a covert communication algorithm is always deployed as a fundamental communication component.However,existing covert communication schemes suffer from critical problems.On the one hand,they require a sender to locally maintain a cryptographic key for a long period of time,which is very costly and inefficient to renew which means renewing the secret key.On the other hand,the ciphertext of covertly sent data would explicitly appear in the network,and thereby the schemes are vulnerable to secret key breach.In this paper,we propose a secure and efficient covert communication scheme for blockchain-integrated SAGINs,dubbed CC-BSAGINs,to free the sender from maintaining secret keys.The key technique is to map the covertly sent data to some transactions on the underlying blockchain in a secure and efficient way;the mapping information is sent via a covert communication algorithm.Such a two-step mechanism releases the sender from key management and does not require the ciphertext to be communicated.We provide formal security proofs and conduct a comprehensive performance evaluation,which demonstrates the security and efficiency of CC-BSAGINs.
基金supported in part by the National Natural Science Foundation of China (No. 61571104)the Sichuan Science and Technology Program (No. 2018JY0539)+2 种基金the Key projects of the Sichuan Provincial Education Department (No. 18ZA0219)the Fundamental Research Funds for the Central Universities (No. ZYGX2017KYQD170)the Innovation Funding (No. 2018510007000134)
文摘The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.
基金This work was supported by National Natural Science Foundation of Chi⁃na under Grant Nos.61901051 and 61932005.
文摘The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Aerial networking provides a prom⁃ising solution to flexible,scalable,low-cost and reliable coverage for wireless devices.The integration of aerial network and terrestrial network has been an inevitable paradigm in the 6G era.However,energy-efficient communications and networking among aerial net⁃work and terrestrial network face great challenges.This paper is dedicated to discussing green communications of the air-ground integrated heterogeneous network(AGIHN).We first provide a brief introduction to the characteristics of AGIHN in 6G networks.Further,we analyze the challenges of green AGIHN from the aspects of green terrestrial networks and green aerial networks.Finally,several solutions to and key technologies of the green AGIHN are discussed.
文摘With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construction of digital library has become the focus of digital campus.A set of manageable,authenticated and secure solutions are needed for remote access to make the campus network be a transit point for the outside users.Remote Access IPSEC Virtual Private Network gives the solution of remote access to e-library resources,networks resources and so on very safely through a public network.It establishes a safe and stable tunnel which encrypts the data passing through it with robust secured algorithms.It is to establish a virtual private network in Internet,so that the two long-distance network users can transmit data to each other in a dedicated network channel.Using this technology,multi-network campus can communicate securely in the unreliable public internet.
文摘According to the characteristics of remote welding, including multiple parameters, real-time, and reliability of long wire transmitting, a distributing computer control scheme is adopted. A serial communication network between the master and the slavery computers is constructed. A synchro-control network among slavery computers is designed. Uniform message format and communication protocols are made. Considering intensive high-frequency noises at the welding zone, a quadruple check mode, including data sum check, parameter type check, welding parameters check and Exclusive OR ( XOR ) check, is adopted to assure the reliability of communication among multiple computers. Based on disturbing circuit, common circuit and sensitive circuit, the measures are brought forward to ensure the stabilization of communication network of remote arc welding by analyzing the wiring principle of anti-high-frequency interference of system bus, signal wires and shielding twisted-pair(STP) wires. The results provide the theoretical and practical references for the manufacture of remote welding robot and the quality of remote welding.
文摘With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.
文摘An inevitable trend has already taken shape for the application of the 5th Generation Mobile Communication Technology(5G)in the railway sector.The application scenarios and business types of the railway sector are complex and diverse,so it is indispensable to test and verify the railway 5G before actual deployment.The design and creation of the railway 5G integrated innovation test platform provides engineering design,test and verification conditions for the networking,coverage and business development of 5G public networks and 5G-R in railway scenarios.This paper introduces the design of the overall architecture for the integrated railway 5G innovation test platform according to the railway network requirements,application scenarios and intelligent development trend;respectively elaborates on the design of the 5G-R core network,bearer network and wireless access along loop tracks,in combination with the characteristics of railway scenarios and the requirements of railway dispatching,operation and safety;raises further solutions on the network deployment and coverage schemes of 5G public networks so as to meet the application requirements of 5G public networks.The study results show that the integrated railway 5G innovation test platform scheme contains co-existence of 5G public and private networks,combines the indoor and outdoor scenarios,as well as takes into account of the dynamic and static tests so as to meet the environmental requirements for the integrated railway 5G test and application of all network functions,for which it can provide comprehensive technical support for railway 5G technology research and development,standard formulation,testing,etc.
文摘This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand resources(DDRs)into the existing distribution systems.This microgrid module is designed to be portable,scalable,easy to deploy,and simple to operate.The modeling of the proposed microgrid module,based on the IEC 61850 standard,is presented.A novel logical node is introduced,which describes functionalities of the bidirectional interlinking converter(BIC)interfacing AC sub-grid and DC sub-grid in a better way.To achieve the target of plug-and-play functionalities,specific microgrid module communication network(MMCN)and microgrid module operating systems(MMOS)are designed and implemented in the hardware prototype built in the laboratory.Experimental results obtained from the lab prototype clearly validate the effectiveness of the proposed design of the microgrid module,communication network and operating system.