We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fix...We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fixed point simultaneously. Firstly, a time-varying consensus gain is introduced to attenuate to the effect of communication noises. Secondly, sufficient conditions are obtained for achieving the mean-square composite-rotating consensus. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.展开更多
Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different...Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises...This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.展开更多
This paper studies the optimization problem of heterogeneous networks under a timevarying topology.Each agent only accesses to one local objective function,which is nonsmooth.An improved algorithm with noisy measureme...This paper studies the optimization problem of heterogeneous networks under a timevarying topology.Each agent only accesses to one local objective function,which is nonsmooth.An improved algorithm with noisy measurement of local objective functions' sub-gradients and additive noises among information exchanging between each pair of agents is designed to minimize the sum of objective functions of all agents.To weaken the effect of these noises,two step sizes are introduced in the control protocol.By graph theory,stochastic analysis and martingale convergence theory,it is proved that if the sub-gradients are uniformly bounded,the sequence of digraphs is balanced and the union graph of all digraphs is joint strongly connected,then the designed control protocol can force all agents to find the global optimal point almost surely.At last,the authors give some numerical examples to verify the effectiveness of the stochastic sub-gradient algorithms.展开更多
This paper addresses the leader-following consensus problem of linear multi-agent systems(MASs) with communication noise. Each agent's dynamical behavior is described by a linear multi-input and multi-output(MIMO)...This paper addresses the leader-following consensus problem of linear multi-agent systems(MASs) with communication noise. Each agent's dynamical behavior is described by a linear multi-input and multi-output(MIMO) system, and the agent's full state is assumed to be unavailable. To deal with this challenge, a state observer is constructed to estimate the agent's full state. A dynamic output-feedback based protocol that is based on the estimated state is proposed. To mitigate the effect of communication noise, noise-attenuation gains are also introduced into the proposed protocol. In this study, each agent is allowed to have its own noise-attenuation gain. It is shown that the proposed protocol can solve the mean square leader-following consensus problem of a linear MIMO MAS. Moreover, if all noise-attenuation gains are of Q(t-β), where b∈(0,1), the convergence rate of the MAS can be quantitatively analyzed. It turns out that all followers' states converge to the leader's state in the mean square sense at a rate of O(t-β).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61304155 and 11371049)Beijing Municipal Government Foundation for Talents,China(Grant No.2012D005003000005)
文摘We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fixed point simultaneously. Firstly, a time-varying consensus gain is introduced to attenuate to the effect of communication noises. Secondly, sufficient conditions are obtained for achieving the mean-square composite-rotating consensus. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004the National Natural Science Foundation of China under Grant 52177086+2 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011408the Science and Technology Program of Guangzhou under Grant 201904010215the Talent Recruitment Project of Guangdong under Grant 2017GC010467.
文摘Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金supported by the National Science Council, Taiwan, China (Grant No. NSC98-2221-E-006-097-MY3)
文摘This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.
基金supported by the National Natural Science Foundation of China under Grant No.61973329National Key Technology R&D Program of China under Grant No.2021YFD2100605Project of Beijing Municipal University Teacher Team Construction Support Plan under Grant No.BPHR20220104。
文摘This paper studies the optimization problem of heterogeneous networks under a timevarying topology.Each agent only accesses to one local objective function,which is nonsmooth.An improved algorithm with noisy measurement of local objective functions' sub-gradients and additive noises among information exchanging between each pair of agents is designed to minimize the sum of objective functions of all agents.To weaken the effect of these noises,two step sizes are introduced in the control protocol.By graph theory,stochastic analysis and martingale convergence theory,it is proved that if the sub-gradients are uniformly bounded,the sequence of digraphs is balanced and the union graph of all digraphs is joint strongly connected,then the designed control protocol can force all agents to find the global optimal point almost surely.At last,the authors give some numerical examples to verify the effectiveness of the stochastic sub-gradient algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.6142231061370032+2 种基金61225017&61421004)Beijing Nova Program(Grant No.Z121101002512066)Guangdong Provincial Natural Science Foundation(Grant No.2014A030313266)
文摘This paper addresses the leader-following consensus problem of linear multi-agent systems(MASs) with communication noise. Each agent's dynamical behavior is described by a linear multi-input and multi-output(MIMO) system, and the agent's full state is assumed to be unavailable. To deal with this challenge, a state observer is constructed to estimate the agent's full state. A dynamic output-feedback based protocol that is based on the estimated state is proposed. To mitigate the effect of communication noise, noise-attenuation gains are also introduced into the proposed protocol. In this study, each agent is allowed to have its own noise-attenuation gain. It is shown that the proposed protocol can solve the mean square leader-following consensus problem of a linear MIMO MAS. Moreover, if all noise-attenuation gains are of Q(t-β), where b∈(0,1), the convergence rate of the MAS can be quantitatively analyzed. It turns out that all followers' states converge to the leader's state in the mean square sense at a rate of O(t-β).