Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other ...Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other directly in a proximity area, thereby enabling abundant Proximity Services(Pro Se), which can be classified into two categories: public safety communication and social discovery. However, two challenges impede the quick development and deployment of Pro Se applications. From the viewpoint of networking, no multi-hop connectivity functionality component can be directly operated on commercially off-the-shelf devices, and from the programming viewpoint, an easily reusable development framework is lacking for developers with minimal knowledge of the underlying communication technologies and connectivity. Considering these two issues, this paper makes a twofold contribution. First, a multi-hop mesh networking based on Bluetooth Low Energy(BLE) is implemented,in which a proactive routing mechanism with link-quality(i.e., received signal strength indication) assistance is designed. Second, a Pro Se development framework called BLE Mesh is designed and implemented, which can provide significant benefits for application developers, framework maintenance professionals, and end users. Rich application programming interfaces can help developers to build Pro Se apps easily and quickly. Dependency inversion principle and template method pattern allow modules in BLE Mesh to be loosely coupled and easy to maintain and update. Callback mechanism enables modules to work smoothly together and automation processes such as registration, node discovery, and messaging are employed to offer nearly zero-configuration for end users.Finally, based on the designed Pro Se development kit, a public safety communications app called Quote Send App is built to distribute emergency information in close area without Internet access. The process illustrates the easy usability of BLE Mesh to develop Pro Se apps.展开更多
In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the sa...In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the safety protocols may be formidable due to the system complexity.In this paper,interface automata(IA) are used to describe the safety service interface behaviors of safety communication protocol.A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN.A case study of using this method to describe and verify a safety communication protocol is included.The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks,livelocks and several mandatory consistency properties.A prototype of safety protocols is also developed based on the presented formally verifying method.展开更多
基金supported by the National Natural Science Foundation of China(No.61171092)Jiangsu Educational Bureau Project(No.14KJA510004)NUPTSFs(Nos.NY215177 and NY217089)
文摘Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other directly in a proximity area, thereby enabling abundant Proximity Services(Pro Se), which can be classified into two categories: public safety communication and social discovery. However, two challenges impede the quick development and deployment of Pro Se applications. From the viewpoint of networking, no multi-hop connectivity functionality component can be directly operated on commercially off-the-shelf devices, and from the programming viewpoint, an easily reusable development framework is lacking for developers with minimal knowledge of the underlying communication technologies and connectivity. Considering these two issues, this paper makes a twofold contribution. First, a multi-hop mesh networking based on Bluetooth Low Energy(BLE) is implemented,in which a proactive routing mechanism with link-quality(i.e., received signal strength indication) assistance is designed. Second, a Pro Se development framework called BLE Mesh is designed and implemented, which can provide significant benefits for application developers, framework maintenance professionals, and end users. Rich application programming interfaces can help developers to build Pro Se apps easily and quickly. Dependency inversion principle and template method pattern allow modules in BLE Mesh to be loosely coupled and easy to maintain and update. Callback mechanism enables modules to work smoothly together and automation processes such as registration, node discovery, and messaging are employed to offer nearly zero-configuration for end users.Finally, based on the designed Pro Se development kit, a public safety communications app called Quote Send App is built to distribute emergency information in close area without Internet access. The process illustrates the easy usability of BLE Mesh to develop Pro Se apps.
基金supported by the New Century Excellent Researcher Award Program from Ministry of Education of China (Grant No. NCET-07-0059)the Fundamental Research Funds for the Central Universities (Grant No.2011YJS006)+1 种基金the National High Technology Research and DevelopmentProgram of China ("863" Program) (Grant No. 2011AA010104)the State Key Laboratory of Rail Traffic Control and Safety Research Project(Grant Nos. RCS2008ZZ001, RCS2008ZZ005)
文摘In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the safety protocols may be formidable due to the system complexity.In this paper,interface automata(IA) are used to describe the safety service interface behaviors of safety communication protocol.A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN.A case study of using this method to describe and verify a safety communication protocol is included.The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks,livelocks and several mandatory consistency properties.A prototype of safety protocols is also developed based on the presented formally verifying method.