As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured L...In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.展开更多
In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retro...In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.展开更多
This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering...This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.展开更多
Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technologic...Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
With the rapid development of information technology,5G communication technology has gradually entered real life,among which the application of edge computing is particularly significant in the information and communi...With the rapid development of information technology,5G communication technology has gradually entered real life,among which the application of edge computing is particularly significant in the information and communication system field.This paper focuses on using edge computing based on 5G communication in information and communication systems.First,the study analyzes the importance of combining edge computing technology with 5G communication technology,and its advantages,such as high efficiency and low latency in processing large amounts of data.The study then explores multiple application scenarios of edge computing in information and communication systems,such as integrated use in the Internet of Things,intelligent transportation,telemedicine and Industry 4.0.The research method is mainly based on theoretical analysis and experimental verification,combined with the characteristics of the 5G network to optimize the edge computing model and test the performance of edge computing in different scenarios through experimental simulation.The results show that edge computing significantly improves the data processing capacity and response speed of ICS in a 5G environment.However,there are also a series of challenges in practical application,including data security and privacy protection,the complexity of resource management and allocation,and the guarantee of quality of service(QoS).Through the case analysis and problem analysis,the paper puts forward the corresponding solution strategies,such as strengthening the data security protocol,introducing the intelligent resource scheduling system and establishing a multi-dimensional service quality monitoring mechanism.Finally,this study points out that the deep integration of edge computing and 5G communication will continue to promote the innovative development of information and communication systems,which has a far-reaching impact and important practical significance for promoting the transformation and upgrading in the field of information technology.展开更多
Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes metho...Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.展开更多
Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challen...Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.展开更多
The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the sev...The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.展开更多
In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the p...In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.展开更多
This paper considers a decomposition framework as a mechanism for information hiding for secure communication via open network channels. Two varieties of this framework are provided: one is based on Gaussian arithmeti...This paper considers a decomposition framework as a mechanism for information hiding for secure communication via open network channels. Two varieties of this framework are provided: one is based on Gaussian arithmetic with complex modulus and another on an elliptic curve modular equation. The proposed algorithm is illustrated in a numerical example.展开更多
The proposed secure communication approach adopts the proposed algorithm of Analysis-By- Synthesis (ABS) speech information hiding to establish a Secret Speech Subliminai Channel (SSSC) for speech secure communica...The proposed secure communication approach adopts the proposed algorithm of Analysis-By- Synthesis (ABS) speech information hiding to establish a Secret Speech Subliminai Channel (SSSC) for speech secure communication over PSTN (Public Switched Telephone Network), and employs the algorithm of ABS speech information extracting to recovery the secret information, This approach is more reliable, covert and securable than traditional and chaotic secure communication.展开更多
In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote clien...In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.展开更多
Two complementary firms' information sharing and security investment are investigated. When two complementary firms with heterogeneous assets are both breached, it is assumed that they suffer different losses which a...Two complementary firms' information sharing and security investment are investigated. When two complementary firms with heterogeneous assets are both breached, it is assumed that they suffer different losses which are associated with their information assets. Some insights about optimal strategies for the firms and the attacker are obtained by the game theory, which forms a comparison with those derived from substitutable firms, and those derived from complementary firms with homogenous loss. In addition, both the unit transform cost of investment and the extent of firms'loss affect the optimal strategies.Assuming that firms can control information sharing, security investments and both of them, respectively, the effect of the social planner is further analyzed on the information sharing, firms' aggregate defence, the aggregate attack and social total cost. Finally, some policy advice is provided through numerical simulation. Results show that firms are willing to choose security investment centrally rather than individually, but an intervention in information sharing by the social planner may not necessarily be preferable.展开更多
In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this p...Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.展开更多
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
文摘In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.
文摘In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.
文摘This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.
文摘Humanity is currently undergoing the fourth industrial revolution,characterized by advancements in artificial intelligence,clean energy,quantum information technology,virtual reality,and biotechnology.This technological revolution is poised to have a profound impact on the world.Quantum information technology encompasses both quantum computing and the transmission of quantum information.This article aims to integrate quantum information technology with international security concerns,exploring its implications for international security and envisioning its groundbreaking significance.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘With the rapid development of information technology,5G communication technology has gradually entered real life,among which the application of edge computing is particularly significant in the information and communication system field.This paper focuses on using edge computing based on 5G communication in information and communication systems.First,the study analyzes the importance of combining edge computing technology with 5G communication technology,and its advantages,such as high efficiency and low latency in processing large amounts of data.The study then explores multiple application scenarios of edge computing in information and communication systems,such as integrated use in the Internet of Things,intelligent transportation,telemedicine and Industry 4.0.The research method is mainly based on theoretical analysis and experimental verification,combined with the characteristics of the 5G network to optimize the edge computing model and test the performance of edge computing in different scenarios through experimental simulation.The results show that edge computing significantly improves the data processing capacity and response speed of ICS in a 5G environment.However,there are also a series of challenges in practical application,including data security and privacy protection,the complexity of resource management and allocation,and the guarantee of quality of service(QoS).Through the case analysis and problem analysis,the paper puts forward the corresponding solution strategies,such as strengthening the data security protocol,introducing the intelligent resource scheduling system and establishing a multi-dimensional service quality monitoring mechanism.Finally,this study points out that the deep integration of edge computing and 5G communication will continue to promote the innovative development of information and communication systems,which has a far-reaching impact and important practical significance for promoting the transformation and upgrading in the field of information technology.
文摘Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.
基金supported by the National Natural Science Foundation of China(Grant Nos.61927811,62035009,and 11974258)the Fundamental Research Program of Shanxi Province(Grant No.202103021224038)+3 种基金the Development Fund in Science and Technology of Shanxi Province(Grant No.YDZJSX2021A009)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A09)the Science and Technology Foundation of Guizhou Province(Grant Nos.ZK[2021]031 and ZK[2023]049)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.
文摘The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.
文摘In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.
文摘This paper considers a decomposition framework as a mechanism for information hiding for secure communication via open network channels. Two varieties of this framework are provided: one is based on Gaussian arithmetic with complex modulus and another on an elliptic curve modular equation. The proposed algorithm is illustrated in a numerical example.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No.2003AA142080, 2004AA775060)the National Natural Sicence Foundation of China (No.60203004)+1 种基金with additional support from the China Post-doctorial Research Foundation (2005-03)the Foundation of Tianjin Key Lab for Advanced Signal Processing(2005).
文摘The proposed secure communication approach adopts the proposed algorithm of Analysis-By- Synthesis (ABS) speech information hiding to establish a Secret Speech Subliminai Channel (SSSC) for speech secure communication over PSTN (Public Switched Telephone Network), and employs the algorithm of ABS speech information extracting to recovery the secret information, This approach is more reliable, covert and securable than traditional and chaotic secure communication.
基金The National Natural Science Foundation of China(No.71071033)the Youth Foundation of Humanity and Social Scienceof Ministry of Education of China(No.11YJC630234)
文摘In order to solve principal-agent problems caused by interest inconformity and information asymmetry during information security outsourcing, it is necessary to design a reasonable incentive mechanism to promote client enterprises to complete outsourcing service actively. The incentive mechanism model of information security outsourcing is designed based on the principal-agent theory. Through analyzing the factors such as enterprise information assets value, invasion probability, information security environment, the agent cost coefficient and agency risk preference degree how to impact on the incentive mechanism, conclusions show that an enterprise information assets value and invasion probability have a positive influence on the fixed fee and the compensation coefficient; while information security environment, the agent cost coefficient and agency risk preference degree have a negative influence on the compensation coefficient. Therefore, the principal enterprises should reasonably design the fixed fee and the compensation coefficient to encourage information security outsourcing agency enterprises to the full extent.
基金The National Natural Science Foundation of China(No.71371050)
文摘Two complementary firms' information sharing and security investment are investigated. When two complementary firms with heterogeneous assets are both breached, it is assumed that they suffer different losses which are associated with their information assets. Some insights about optimal strategies for the firms and the attacker are obtained by the game theory, which forms a comparison with those derived from substitutable firms, and those derived from complementary firms with homogenous loss. In addition, both the unit transform cost of investment and the extent of firms'loss affect the optimal strategies.Assuming that firms can control information sharing, security investments and both of them, respectively, the effect of the social planner is further analyzed on the information sharing, firms' aggregate defence, the aggregate attack and social total cost. Finally, some policy advice is provided through numerical simulation. Results show that firms are willing to choose security investment centrally rather than individually, but an intervention in information sharing by the social planner may not necessarily be preferable.
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
文摘Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.