An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the...An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole(IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.展开更多
The NCAR community climate model was run for 20 years and the simulated East Asian climate was analyzed and checked against the observation data.It is found that the large-scale features of the East Asia climate were ...The NCAR community climate model was run for 20 years and the simulated East Asian climate was analyzed and checked against the observation data.It is found that the large-scale features of the East Asia climate were simulated pretty well by the model,though there are still some discrepancies between the model output and the observation.The simulated geopotential height,wind and temperature fields are very close to the observations.The large scale systems such as subtropical high.Mongolia high,Indian low which have important influence on the East Asia monsoon also simulated pretty well.It is also found that the moisture field is not simulated so well as those fields mentioned above.The simulated precipitation is rather different from the observations.These suggest that some physical processes in the CCM2 need to be improved.展开更多
Significant changes have occurred in the Antarctic Peninsula(AP) including warmer temperatures, accelerated melting of glaciers, and breakup of ice shelves. This study uses the Weather Research and Forecasting model(W...Significant changes have occurred in the Antarctic Peninsula(AP) including warmer temperatures, accelerated melting of glaciers, and breakup of ice shelves. This study uses the Weather Research and Forecasting model(WRF)forced by the Community Climate System Model 4(CCSM) simulations to study foehn wind warming in AP. Weather systems responsible for generating the foehn events are two cyclonic systems that move toward and/or cross over AP. WRF simulates the movement of cyclonic systems and the resulting foehn wind warming that is absent in CCSM. It is found that the warming extent along a transect across the central AP toward Larsen C Ice Shelf(LCIS) varies during the simulation period and the maximum warming moves from near the base of leeward slopes to over 40 km away extending toward the attached LCIS. Our analysis suggests that the foehn wind warming is negatively correlated with the incoming air temperature and the mountain top temperature during periods without significant precipitation, in which isentropic drawdown is the dominant heating mechanism. On the other hand, when significant precipitation occurs along the windward side of AP, latent heating is the major heating mechanism evidenced by positive relations between the foehn wind warming and 1) incoming air temperature, 2) windward precipitation, and 3)latent heating. Foehn wind warming caused by isentropic drawdown also tends to be stronger than that caused by latent heating. Comparison of WRF simulations forced by original and corrected CCSM data indicates that foehn wind warming is stronger in the original CCSM forced simulation when no significant windward precipitation is present.The foehn wind warming becomes weaker in both simulations when there is significant windward precipitation. This suggests that model’s ability to resolve the foehn warming varies with the forcing data, but the precipitation impact on the leeward warming is consistent.展开更多
基金the National Basic Research Program of China(973 Program)(No.2012CB956000)the Strategic Priority Project of Chinese Academy of Sciences(No.XDA11010301)+2 种基金the National Natural Science Foundation of China(Nos.41421005,U1406401)the Public Welfare Grant of China Meteorological Administration(No.GYHY201306018)the Global Change and Air-Sea Interactions of State Oceanic Administration(No.GASI-03-01-01-05)
文摘An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole(IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
文摘The NCAR community climate model was run for 20 years and the simulated East Asian climate was analyzed and checked against the observation data.It is found that the large-scale features of the East Asia climate were simulated pretty well by the model,though there are still some discrepancies between the model output and the observation.The simulated geopotential height,wind and temperature fields are very close to the observations.The large scale systems such as subtropical high.Mongolia high,Indian low which have important influence on the East Asia monsoon also simulated pretty well.It is also found that the moisture field is not simulated so well as those fields mentioned above.The simulated precipitation is rather different from the observations.These suggest that some physical processes in the CCM2 need to be improved.
基金sponsored by the US NSF Grants OPP-1649713 and OPP-1543445
文摘Significant changes have occurred in the Antarctic Peninsula(AP) including warmer temperatures, accelerated melting of glaciers, and breakup of ice shelves. This study uses the Weather Research and Forecasting model(WRF)forced by the Community Climate System Model 4(CCSM) simulations to study foehn wind warming in AP. Weather systems responsible for generating the foehn events are two cyclonic systems that move toward and/or cross over AP. WRF simulates the movement of cyclonic systems and the resulting foehn wind warming that is absent in CCSM. It is found that the warming extent along a transect across the central AP toward Larsen C Ice Shelf(LCIS) varies during the simulation period and the maximum warming moves from near the base of leeward slopes to over 40 km away extending toward the attached LCIS. Our analysis suggests that the foehn wind warming is negatively correlated with the incoming air temperature and the mountain top temperature during periods without significant precipitation, in which isentropic drawdown is the dominant heating mechanism. On the other hand, when significant precipitation occurs along the windward side of AP, latent heating is the major heating mechanism evidenced by positive relations between the foehn wind warming and 1) incoming air temperature, 2) windward precipitation, and 3)latent heating. Foehn wind warming caused by isentropic drawdown also tends to be stronger than that caused by latent heating. Comparison of WRF simulations forced by original and corrected CCSM data indicates that foehn wind warming is stronger in the original CCSM forced simulation when no significant windward precipitation is present.The foehn wind warming becomes weaker in both simulations when there is significant windward precipitation. This suggests that model’s ability to resolve the foehn warming varies with the forcing data, but the precipitation impact on the leeward warming is consistent.