The configuration, function, principle of operation and the main design of the wireless remote measurement system of drill hydrology based on GPRS were introduced in this paper. The current resources of GPIRS network ...The configuration, function, principle of operation and the main design of the wireless remote measurement system of drill hydrology based on GPRS were introduced in this paper. The current resources of GPIRS network was used by the system, and water level, water temperature and turbidity were measured by the intelligent sensors. Then the data were transmitted to the monitoring computer by the GPRS modem in wireless, which processed the data, forecasted and predicted water disaster. The monitoring computer software has the Chinese operation interface in the windows circumstance with simple and convenience using. The managers can operate every function by the Chinese cue. The data communications between the remote indicating instrument distributing in every drill and the monitoring computer is built only by one monitoring computer. The technology of data collection, GPRS wireless communication, computer, data processing, database were collected by the system, some functions such as real time supervising, early-warning, decision-making supporting, and so on had been achieved. The system has such merits as high precision, low cost, flexible distributing, credible transmitting and simple operation.展开更多
Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coast...Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coastal areas and provides livelihood opportunities to the fishermen and pastoral families living in these areas. In real sense, mangrove is the Kalpvriksh (divine tree which fulfills all the desires) for the coastal communities. The restoration and plantation of mangroves have received a lot of attentions worldwide. To assess the impact of mangrove plantation activities and to monitor the mangrove regeneration and restoration in various villages, a joint study under the Integrated Coastal Zone Management Project (ICZMP) was taken up by Gujarat Ecology Commission (GEC) and Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG) in the Gulf of Kachchh, Gujarat State.?The major objective of this study was to monitor the increase in mangrove cover in coastal areas of Gulf of Kachchh using the Indian Remote Sensing Satellite data of 2005, 2011 and 2014. The mangrove regeneration was monitored using multi-temporal Indian Remote Sensing Satellite (IRS) LISS-III and LISS-IV digital data covering Gulf of Kachchh region. The multi-temporal IRS LISS-III data covering Gulf of Kachchh of October-2005, November-2011 and LISS-IV data of April-2014 was analyzed. The mangrove density and mangrove area in different talukas was estimated based on the analysis of IRS LISS-III digital data. The mangroves have been delineated based on the pink colour observed on satellite images and the area was estimated in the Geographic Information System (GIS) environment. The taluka or block-level mangrove areas were estimated and changes in the areas were monitored during the period of six years from 2005 to 2011. It was observed that the areas where mangrove regeneration activities were carried out with active participation of Community Based Organizations (CBOs), mangrove density as well as mangrove area have substantially increased in the Gulf of Kachchh region.展开更多
Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from ...Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from the aquaponics plant itself with its huge amount of smart sensors for water quality, fish and plant growth, system state etc. and from the stakeholder, e.g., farmers, retailers and end consumers. The intelligent management of aquaponics is only possible if this data and information are managed and used in an intelligent way. Therefore, the main focus of this paper is to introduce an intelligent information management (IIM) for aquaponics. It will be shown how the information can be used to create services such as predictive analytics, system optimization and anomaly detection to improve the aquaponics system. The results show that the system enabled full traceability and transparency in the aquaponics processes (customers can follow what is going on at the farm), reduced water and energy use and increased revenue through early fault detection. In this, paper the information management approach will be introduced and the key benefits of the digitized aquaponics system will be given.展开更多
针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Nar...针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Narrow Band Internet of Things)上传至OneNET云平台。经数据分析后以可视化方式呈现,对异常数据触发报警实时响应。通过手机APP实现数据实时监测及一键处置。经测试,监控系统报警准确率高于97.2%,数据延迟低于50 ms,表明该系统能够实现消防火警的无线远程监控,并做出快速反应,满足中小微企业和普通家庭用户的消防监控需要。展开更多
Most traditional maize seeding parameter monitoring devices use wired data transmission.The problems include wiring troubles,short transmission distances.And human-computer interaction display terminals are unique and...Most traditional maize seeding parameter monitoring devices use wired data transmission.The problems include wiring troubles,short transmission distances.And human-computer interaction display terminals are unique and usually customized rather than universal.A remote monitoring system for maize seeding parameters based on Android and wireless communication was developed in this study.The system used a single-chip microcomputer as the main controller and an infrared photoelectric sensor to capture seed information.The Android terminal application was used to set and display the seeder’s seed parameter information and monitor it.The Air202 communication module enabled remote data transmission,while the Global Positioning System(GPS)monitored the speed of the planter.By establishing a message queue telemetry transmission(MQTT)cloud served as a data freight station,data reception,storage and forwarding can be performed.Seeding parameters can generate Excel spreadsheets in real-time for easy data processing and storage.In order to verify the reliability of the system,the seeding parameter monitoring comparison test and the multi-terminal remote monitoring test were designed.The results of the seeding parameter monitoring comparison test showed that the monitoring system of this study had higher monitoring accuracy.The maximum average relative error of seeding parameter monitoring was 0.4%,which had high monitoring accuracy.The multi-terminal remote monitoring test showed that the monitoring system of this research can adapt many types of Android terminals,realize the wireless connection,and realize remote synchronous monitoring at different distances.This study provides a reference for intelligent remote monitoring and intelligent agriculture on unmanned farms.展开更多
文摘The configuration, function, principle of operation and the main design of the wireless remote measurement system of drill hydrology based on GPRS were introduced in this paper. The current resources of GPIRS network was used by the system, and water level, water temperature and turbidity were measured by the intelligent sensors. Then the data were transmitted to the monitoring computer by the GPRS modem in wireless, which processed the data, forecasted and predicted water disaster. The monitoring computer software has the Chinese operation interface in the windows circumstance with simple and convenience using. The managers can operate every function by the Chinese cue. The data communications between the remote indicating instrument distributing in every drill and the monitoring computer is built only by one monitoring computer. The technology of data collection, GPRS wireless communication, computer, data processing, database were collected by the system, some functions such as real time supervising, early-warning, decision-making supporting, and so on had been achieved. The system has such merits as high precision, low cost, flexible distributing, credible transmitting and simple operation.
文摘Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coastal areas and provides livelihood opportunities to the fishermen and pastoral families living in these areas. In real sense, mangrove is the Kalpvriksh (divine tree which fulfills all the desires) for the coastal communities. The restoration and plantation of mangroves have received a lot of attentions worldwide. To assess the impact of mangrove plantation activities and to monitor the mangrove regeneration and restoration in various villages, a joint study under the Integrated Coastal Zone Management Project (ICZMP) was taken up by Gujarat Ecology Commission (GEC) and Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG) in the Gulf of Kachchh, Gujarat State.?The major objective of this study was to monitor the increase in mangrove cover in coastal areas of Gulf of Kachchh using the Indian Remote Sensing Satellite data of 2005, 2011 and 2014. The mangrove regeneration was monitored using multi-temporal Indian Remote Sensing Satellite (IRS) LISS-III and LISS-IV digital data covering Gulf of Kachchh region. The multi-temporal IRS LISS-III data covering Gulf of Kachchh of October-2005, November-2011 and LISS-IV data of April-2014 was analyzed. The mangrove density and mangrove area in different talukas was estimated based on the analysis of IRS LISS-III digital data. The mangroves have been delineated based on the pink colour observed on satellite images and the area was estimated in the Geographic Information System (GIS) environment. The taluka or block-level mangrove areas were estimated and changes in the areas were monitored during the period of six years from 2005 to 2011. It was observed that the areas where mangrove regeneration activities were carried out with active participation of Community Based Organizations (CBOs), mangrove density as well as mangrove area have substantially increased in the Gulf of Kachchh region.
文摘Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from the aquaponics plant itself with its huge amount of smart sensors for water quality, fish and plant growth, system state etc. and from the stakeholder, e.g., farmers, retailers and end consumers. The intelligent management of aquaponics is only possible if this data and information are managed and used in an intelligent way. Therefore, the main focus of this paper is to introduce an intelligent information management (IIM) for aquaponics. It will be shown how the information can be used to create services such as predictive analytics, system optimization and anomaly detection to improve the aquaponics system. The results show that the system enabled full traceability and transparency in the aquaponics processes (customers can follow what is going on at the farm), reduced water and energy use and increased revenue through early fault detection. In this, paper the information management approach will be introduced and the key benefits of the digitized aquaponics system will be given.
文摘针对传统消防监控系统存在开发成本高、误警率高、实时监控不便的问题,提出一种基于物联网云平台的智慧消防远程监控系统。采用STM32单片机作为中枢控制芯片,经多传感器采集温度、湿度、烟雾、火焰等环境数据,通过窄带物联网(NB-IoT,Narrow Band Internet of Things)上传至OneNET云平台。经数据分析后以可视化方式呈现,对异常数据触发报警实时响应。通过手机APP实现数据实时监测及一键处置。经测试,监控系统报警准确率高于97.2%,数据延迟低于50 ms,表明该系统能够实现消防火警的无线远程监控,并做出快速反应,满足中小微企业和普通家庭用户的消防监控需要。
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0700703)the National Natural Science Foundation of China(Grant No.51575515)the National Industry System of Corn Technology of China(CARS-02).
文摘Most traditional maize seeding parameter monitoring devices use wired data transmission.The problems include wiring troubles,short transmission distances.And human-computer interaction display terminals are unique and usually customized rather than universal.A remote monitoring system for maize seeding parameters based on Android and wireless communication was developed in this study.The system used a single-chip microcomputer as the main controller and an infrared photoelectric sensor to capture seed information.The Android terminal application was used to set and display the seeder’s seed parameter information and monitor it.The Air202 communication module enabled remote data transmission,while the Global Positioning System(GPS)monitored the speed of the planter.By establishing a message queue telemetry transmission(MQTT)cloud served as a data freight station,data reception,storage and forwarding can be performed.Seeding parameters can generate Excel spreadsheets in real-time for easy data processing and storage.In order to verify the reliability of the system,the seeding parameter monitoring comparison test and the multi-terminal remote monitoring test were designed.The results of the seeding parameter monitoring comparison test showed that the monitoring system of this study had higher monitoring accuracy.The maximum average relative error of seeding parameter monitoring was 0.4%,which had high monitoring accuracy.The multi-terminal remote monitoring test showed that the monitoring system of this research can adapt many types of Android terminals,realize the wireless connection,and realize remote synchronous monitoring at different distances.This study provides a reference for intelligent remote monitoring and intelligent agriculture on unmanned farms.