Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1...Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1,n,n+1,where m and n are relatively prime positive integers,then R is commutative;(2)if for each x∈R\J(R)and each y∈R,(xy)^(k)=y^(k)x^(k)for k=m,m+1,m+2,where m is a positive integer,then R is commutative.Secondly,generalized 2-CN rings,a kind of ring being commutative to some extent,are investigated.Some relations between generalized 2-CN rings and other kinds of rings,such as reduced rings,regular rings,2-good rings,and weakly Abel rings,are presented.展开更多
It is known that the solution to a Cauchy problem of linear differential equations:x'(t)=A(t)x(t),with x(t0)=x0,can be presented by the matrix exponential as exp(∫_(t0)^(t)A(s)ds)x0,if the commutativity condition...It is known that the solution to a Cauchy problem of linear differential equations:x'(t)=A(t)x(t),with x(t0)=x0,can be presented by the matrix exponential as exp(∫_(t0)^(t)A(s)ds)x0,if the commutativity condition for the coefficient matrix A(t)holds:[∫_(t0)^(t)A(s)ds,A(t)]=0.A natural question is whether this is true without the commutativity condition.To give a definite answer to this question,we present two classes of illustrative examples of coefficient matrices,which satisfy the chain rule d/dt exp(∫_(t0)^(t)A(s)ds)=A(t)exp(∫_(t0)^(t)A(s)ds),but do not possess the commutativity condition.The presented matrices consist of finite-times continuously differentiable entries or smooth entries.展开更多
基金This work was in part supported by the National Science Foundation of China under Grant Nos.11701499 and 11671008the National Science Foundation of Projects of Jiangsu Province of China under Grant No.BK20170589.
文摘Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1,n,n+1,where m and n are relatively prime positive integers,then R is commutative;(2)if for each x∈R\J(R)and each y∈R,(xy)^(k)=y^(k)x^(k)for k=m,m+1,m+2,where m is a positive integer,then R is commutative.Secondly,generalized 2-CN rings,a kind of ring being commutative to some extent,are investigated.Some relations between generalized 2-CN rings and other kinds of rings,such as reduced rings,regular rings,2-good rings,and weakly Abel rings,are presented.
基金supported in part by the Established Researcher Grant and the CAS Faculty Development Grant of the University of South Florida,Chunhui Plan of the Ministry of Education of China,Wang Kuancheng Foundation,the National Natural Science Foundation of China(Grant Nos.10332030,10472091 and 10502042)the Doctorate Foundation of Northwestern Polytechnical University(Grant No.CX200616).
文摘It is known that the solution to a Cauchy problem of linear differential equations:x'(t)=A(t)x(t),with x(t0)=x0,can be presented by the matrix exponential as exp(∫_(t0)^(t)A(s)ds)x0,if the commutativity condition for the coefficient matrix A(t)holds:[∫_(t0)^(t)A(s)ds,A(t)]=0.A natural question is whether this is true without the commutativity condition.To give a definite answer to this question,we present two classes of illustrative examples of coefficient matrices,which satisfy the chain rule d/dt exp(∫_(t0)^(t)A(s)ds)=A(t)exp(∫_(t0)^(t)A(s)ds),but do not possess the commutativity condition.The presented matrices consist of finite-times continuously differentiable entries or smooth entries.