In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases....In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.展开更多
In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we ob...In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we obtain the correspoding convergent rosults.展开更多
Let Ψ be the geodesic flow associated with a two-sided invariant metric on a compact Lie group. In this paper, we prove that every ergodic measure μ of Ψ is supported on the unit tangent bundle of a flat torus. As ...Let Ψ be the geodesic flow associated with a two-sided invariant metric on a compact Lie group. In this paper, we prove that every ergodic measure μ of Ψ is supported on the unit tangent bundle of a flat torus. As an application, all Lyapunov exponents of μ are zero hence μ is not hyperbolic. Our underlying manifolds have nonnegative curvature (possibly strictly positive on some sections), whereas in contrast, all geodesic flows related to negative curvature are Anosov hence every ergodic measure is hyperbolic.展开更多
In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dim...In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dimension of the stratified Lie group G.展开更多
In this paper, we consider a class of left invariant Riemannian metrics on Sp(n),which is invariant under the adjoint action of the subgroup Sp(n-3) × Sp(1) × Sp(1) × Sp(1).Based on the related formulae...In this paper, we consider a class of left invariant Riemannian metrics on Sp(n),which is invariant under the adjoint action of the subgroup Sp(n-3) × Sp(1) × Sp(1) × Sp(1).Based on the related formulae in the literature, we show that the existence of Einstein metrics is equivalent to the existence of solutions of some homogeneous Einstein equations. Then we use a technique of the Gr?bner basis to get a sufficient condition for the existence, and show that this method will lead to new non-naturally reductive metrics.展开更多
文摘In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.
文摘In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we obtain the correspoding convergent rosults.
基金supported by National Natural Science Foundation of China (Grant No. 11231001)Education Ministry of China
文摘Let Ψ be the geodesic flow associated with a two-sided invariant metric on a compact Lie group. In this paper, we prove that every ergodic measure μ of Ψ is supported on the unit tangent bundle of a flat torus. As an application, all Lyapunov exponents of μ are zero hence μ is not hyperbolic. Our underlying manifolds have nonnegative curvature (possibly strictly positive on some sections), whereas in contrast, all geodesic flows related to negative curvature are Anosov hence every ergodic measure is hyperbolic.
文摘In this paper we prove that the Jacobian J(F) of a map F(f1,…,f1 from Ginto Rt maps the product of Lebesgue space Lp1×…× Lp1 into local Hardy space hY(G),whereQ/Q+1〈r〈1,and Q is the homogeneous dimension of the stratified Lie group G.
基金supported by NSFC (12071228,11901300, 51535008)Natural Science Research of Jiangsu Education Institutions of China (19KJB110015)。
文摘In this paper, we consider a class of left invariant Riemannian metrics on Sp(n),which is invariant under the adjoint action of the subgroup Sp(n-3) × Sp(1) × Sp(1) × Sp(1).Based on the related formulae in the literature, we show that the existence of Einstein metrics is equivalent to the existence of solutions of some homogeneous Einstein equations. Then we use a technique of the Gr?bner basis to get a sufficient condition for the existence, and show that this method will lead to new non-naturally reductive metrics.