Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filte...Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.展开更多
特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出...特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出了一种1 000 k V紧凑型输电线路的导线排列方式优化方法,该方法以提高自然功率和单位截面积自然功率为目标,并考虑工程实际约束,建立多目标不等式约束的非线性优化模型,通过模型求解得到导线优化的初始方案。在初始方案的基础上,采用粒子群优化方法对初始方案的子导线排列进行了非对称优化,对比分析了优化前后导线的电磁环境因素以及线路的电气参数,并利用有限元分析方法对优化排列后的导线表面电场强度进行了仿真验证。展开更多
文摘Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO? (CST MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wideband (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for high power applications, are presented. The design of the UWB BP filter is based on the use of impedance steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is between 3-10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 dB in a large frequency range (4-9.5) GHz. The simulated results of stopband performances are better than 15 dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 mm in size.
文摘特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出了一种1 000 k V紧凑型输电线路的导线排列方式优化方法,该方法以提高自然功率和单位截面积自然功率为目标,并考虑工程实际约束,建立多目标不等式约束的非线性优化模型,通过模型求解得到导线优化的初始方案。在初始方案的基础上,采用粒子群优化方法对初始方案的子导线排列进行了非对称优化,对比分析了优化前后导线的电磁环境因素以及线路的电气参数,并利用有限元分析方法对优化排列后的导线表面电场强度进行了仿真验证。