期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
COMPACT DIFFERENCES OF COMPOSITION OPERATORS ON HOLOMORPHIC FUNCTION SPACES IN THE UNIT BALL 被引量:6
1
作者 江良英 欧阳才衡 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1679-1693,共15页
We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condit... We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005. 展开更多
关键词 composition operators Hardy space Bergman spaces compact differences
下载PDF
Comments on Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD
2
作者 张红娜 宇波 +2 位作者 王艺 魏进家 李凤臣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第5期669-676,共8页
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan... The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes. 展开更多
关键词 explicit compact difference scheme conventional finite difference scheme central difference scheme upwind difference scheme
下载PDF
Overlapping Domain Decomposition Finite Difference Algorithm for Compact Difference Scheme of the Heat Conduction Equation
3
作者 张红梅 《Chinese Quarterly Journal of Mathematics》 2015年第4期495-502,共8页
In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspac... In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel. 展开更多
关键词 heat equation compact difference scheme domain decomposition partition of unity subspace correction
下载PDF
Compact Difference Method for Time-Fractional Neutral Delay Nonlinear Fourth-Order Equation
4
作者 Huan Wang Qing Yang 《Engineering(科研)》 CAS 2022年第12期544-566,共23页
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s... In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme. 展开更多
关键词 Two-Dimensional Nonlinear Sub-Diffusion Equations Neutral Delay compact difference Scheme CONVERGENCE Stability
下载PDF
A Compact Difference Method for Viscoelastic Plate Vibration Equation
5
作者 Cailian Wu Congcong Wei Ailing Zhu 《Engineering(科研)》 2021年第11期631-645,共15页
In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme... In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme for the initial-boundary value problem of the viscoelastic plate vibration equation is established. Then the stability and convergence of the difference scheme are analyzed by the energy method, and the convergence order is <img src="Edit_0a250b60-7c3c-4caf-8013-5e302d6477ab.png" alt="" />. Finally, some numerical examples are given of which results verify the accuracy and validity of the scheme. 展开更多
关键词 Viscoelastic Plate Vibration Equation compact difference Method STABILITY CONVERGENCE
下载PDF
Linearly Compact Difference Scheme for the Two-Dimensional Kuramoto-Tsuzuki Equation with the Neumann Boundary Condition
6
作者 Qifeng Zhang Lu Zhang 《Annals of Applied Mathematics》 2023年第1期49-78,共30页
In this paper,we analyze and test a high-order compact difference scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki equation under the Neumann boundary condition.A three-level average techniq... In this paper,we analyze and test a high-order compact difference scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki equation under the Neumann boundary condition.A three-level average technique is utilized,thereby leading to a linearized difference scheme.The main work lies in the pointwise error estimate in H^(2)-norm.The optimal fourth-order convergence order is proved in combination of induction,the energy method and the embedded inequality.Moreover,we establish the stability of the difference scheme with respect to the initial value under very mild condition,however,does not require any step ratio restriction.Extensive numerical examples with/without exact solutions under diverse cases are implemented to validate the theoretical results. 展开更多
关键词 Kuramoto-Tsuzuki equation compact difference scheme pointwise error estimate stability numerical simulation
原文传递
A three level linearized compact difference scheme for the Cahn-Hilliard equation 被引量:22
7
作者 LI Juan 1,2 ,SUN ZhiZhong 1,& ZHAO Xuan 1 1 Department of Mathematics,Southeast University,Nanjing 210096,China 2 Yingtian College,Nanjing 210046,China 《Science China Mathematics》 SCIE 2012年第4期805-826,共22页
This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional conv... This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results. 展开更多
关键词 Cahn-Hilliard equation compact difference scheme CONVERGENCE SOLVABILITY CONSERVATION energynon-increase
原文传递
A Compact Difference Scheme for an Evolution Equation with a Weakly Singular Kernel 被引量:2
8
作者 Hongbin Chen Da Xu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2012年第4期559-572,共14页
This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by mea... This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by means of the second order convolution quadrature suggested by Lubich.The stability and convergence are proved by the energy method.A numerical experiment is reported to verify the theoretical predictions. 展开更多
关键词 Evolution equation weakly singular kernel compact difference scheme STABILITY CONVERGENCE numerical experiment
原文传递
A Compact Difference Scheme on Graded Meshes for the Nonlinear Fractional Integro-differential Equation with Non-smooth Solutions
9
作者 Da-kang CEN Zhi-bo WANG Yan MO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第3期601-613,共13页
In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M den... In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example. 展开更多
关键词 nonlinear fractional integro-differential equation graded meshes discrete fractional Gr?nwall inequality compact difference scheme stability and convergence
原文传递
COMPACT FINITE DIFFERENCE-FOURIER SPECTRAL METHOD FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 被引量:5
10
作者 熊忠民 凌国灿 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第4期296-306,共11页
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen... A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported. 展开更多
关键词 compact finite difference Fourier spectral method numerical simulation vortex dislocation
下载PDF
A Compact Explicit Difference Scheme of High Accuracy for Extended Boussinesq Equations
11
作者 周俊陶 林建国 谢志华 《China Ocean Engineering》 SCIE EI 2007年第3期507-514,共8页
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr... Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan. 展开更多
关键词 high accuracy numerical simulation compact explicit difference scheme extended Boussinesq equations
下载PDF
High accuracy compact finite difference methods and their applications
12
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
下载PDF
Two Energy-Preserving Compact Finite Difference Schemes for the Nonlinear Fourth-Order Wave Equation
13
作者 Xiaoyi Liu Tingchun Wang +1 位作者 Shilong Jin Qiaoqiao Xu 《Communications on Applied Mathematics and Computation》 2022年第4期1509-1530,共22页
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from... In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties. 展开更多
关键词 Nonlinear fourth-order wave equation compact finite difference scheme Error estimate Energy conservation Iterative algorithm
下载PDF
A Hybrid ESA-CCD Method for Variable-Order Time-Fractional Diffusion Equations
14
作者 Xiaoxue Lu Chunhua Zhang +1 位作者 Huiling Xue Bowen Zhong 《Journal of Applied Mathematics and Physics》 2024年第9期3053-3065,共13页
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a... In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments. 展开更多
关键词 Variable-Order Caputo Fractional Derivative Combined compact difference Method Exponential-Sum-Approximation
下载PDF
UNIFORM ERROR BOUNDS OF A CONSERVATIVE COMPACT FINITE DIFFERENCE METHOD FOR THE QUANTUM ZAKHAROV SYSTEM IN THE SUBSONIC LIMIT REGIME
15
作者 Gengen Zhang Chunmei Su 《Journal of Computational Mathematics》 SCIE CSCD 2024年第1期289-312,共24页
In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.... In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior. 展开更多
关键词 Quantum Zakharov system Subsonic limit compact finite difference method Uniformly accurate Error estimate
原文传递
Numerical simulation for 2D double-diffusive convection(DDC) in rectangular enclosures based on a high resolution upwind compact streamfunction model Ⅰ: numerical method and code validation
16
作者 Yaping YAN Shuang WU +1 位作者 Kaiyuan TIAN Zhenfu TIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1431-1448,共18页
A high resolution upwind compact streamfunction numerical algorithm for two-dimensional(2D)double-diffusive convection(DDC)is developed.The unsteady Navier-Stokes(N-S)equations in the streamfunction-velocity form and ... A high resolution upwind compact streamfunction numerical algorithm for two-dimensional(2D)double-diffusive convection(DDC)is developed.The unsteady Navier-Stokes(N-S)equations in the streamfunction-velocity form and the scalar temperature and concentration equations are used.An optimized third-order upwind compact(UCD3 opt)scheme with a low dispersion error for the first derivatives is utilized to approximate the third derivatives of the streamfunction in the advection terms of the N-S equations and the first derivatives in the advection terms of the scalar temperature and concentration equations.The remaining first derivatives of the streamfunction(velocity),temperature,and concentration variables used in the governing equations are discretized by the fourth-order compact Pade(SCD4)schemes.With the temperature and concentration variables and their approximate values of the first derivatives obtained by the SCD4 schemes,the explicit fourth-order compact schemes are suggested to approximate the second derivatives of temperature and concentration in the diffusion terms of the energy and concentration equations.The discretization of the temporal term is executed with the second-order Crank-Nicolson(C-N)scheme.To assess the spatial behavior capability of the established numerical algorithm and verify the developed computer code,the DDC flow is numerically solved.The obtained results agree well with the benchmark solutions and some accurate results available in the literature,verifying the accuracy,effectiveness,and robustness of the provided algorithm.Finally,a preliminary application of the proposed method to the DDC is carried out. 展开更多
关键词 double diffusive convection(DDC) high resolution heat and mass transfer upwind compact difference streamfunction formulation
下载PDF
A High-Order Compact Scheme with Square-Conservativity
17
作者 季仲贞 李京 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第4期150-154,共5页
In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the ex... In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems. 展开更多
关键词 Square conservative scheme compact difference High accuracy scheme
下载PDF
Fast High Order Algorithm for Three-Dimensional Helmholtz Equation Involving Impedance Boundary Condition with Large Wave Numbers
18
作者 Chengjie Tong Xianqi Fang Meiling Zhao 《American Journal of Computational Mathematics》 2023年第2期211-229,共19页
Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundar... Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in  and -norms, and costs less CPU calculation time and random access memory. 展开更多
关键词 Impedance Boundary Condition Helmholtz Equation compact Finite difference Fourier Sine Transform Large Wave Numbers
下载PDF
COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEMES FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS 被引量:10
19
作者 Yiping Fu 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第1期98-111,共14页
In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive an... In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the O(h^4) term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions. 展开更多
关键词 Helmholtz equation compact difference scheme FFT algorithm Convergence.
原文传递
OPTIMAL POINT-WISE ERROR ESTIMATE OF A COMPACT FINITE DIFFERENCE SCHEME FOR THE COUPLED NONLINEAR SCHRODINGER EQUATIONS 被引量:7
20
作者 TingchunWang 《Journal of Computational Mathematics》 SCIE CSCD 2014年第1期58-74,共17页
In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is de... In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme. 展开更多
关键词 Coupled nonlinear SchrSdinger equations compact difference scheme CONSERVATION Point-wise error estimate.
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部