We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condit...We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.展开更多
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspac...In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme...In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme for the initial-boundary value problem of the viscoelastic plate vibration equation is established. Then the stability and convergence of the difference scheme are analyzed by the energy method, and the convergence order is <img src="Edit_0a250b60-7c3c-4caf-8013-5e302d6477ab.png" alt="" />. Finally, some numerical examples are given of which results verify the accuracy and validity of the scheme.展开更多
In this paper,we analyze and test a high-order compact difference scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki equation under the Neumann boundary condition.A three-level average techniq...In this paper,we analyze and test a high-order compact difference scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki equation under the Neumann boundary condition.A three-level average technique is utilized,thereby leading to a linearized difference scheme.The main work lies in the pointwise error estimate in H^(2)-norm.The optimal fourth-order convergence order is proved in combination of induction,the energy method and the embedded inequality.Moreover,we establish the stability of the difference scheme with respect to the initial value under very mild condition,however,does not require any step ratio restriction.Extensive numerical examples with/without exact solutions under diverse cases are implemented to validate the theoretical results.展开更多
This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional conv...This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.展开更多
This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by mea...This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by means of the second order convolution quadrature suggested by Lubich.The stability and convergence are proved by the energy method.A numerical experiment is reported to verify the theoretical predictions.展开更多
In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M den...In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.展开更多
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen...A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.展开更多
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr...Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.展开更多
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been...Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed....In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior.展开更多
A high resolution upwind compact streamfunction numerical algorithm for two-dimensional(2D)double-diffusive convection(DDC)is developed.The unsteady Navier-Stokes(N-S)equations in the streamfunction-velocity form and ...A high resolution upwind compact streamfunction numerical algorithm for two-dimensional(2D)double-diffusive convection(DDC)is developed.The unsteady Navier-Stokes(N-S)equations in the streamfunction-velocity form and the scalar temperature and concentration equations are used.An optimized third-order upwind compact(UCD3 opt)scheme with a low dispersion error for the first derivatives is utilized to approximate the third derivatives of the streamfunction in the advection terms of the N-S equations and the first derivatives in the advection terms of the scalar temperature and concentration equations.The remaining first derivatives of the streamfunction(velocity),temperature,and concentration variables used in the governing equations are discretized by the fourth-order compact Pade(SCD4)schemes.With the temperature and concentration variables and their approximate values of the first derivatives obtained by the SCD4 schemes,the explicit fourth-order compact schemes are suggested to approximate the second derivatives of temperature and concentration in the diffusion terms of the energy and concentration equations.The discretization of the temporal term is executed with the second-order Crank-Nicolson(C-N)scheme.To assess the spatial behavior capability of the established numerical algorithm and verify the developed computer code,the DDC flow is numerically solved.The obtained results agree well with the benchmark solutions and some accurate results available in the literature,verifying the accuracy,effectiveness,and robustness of the provided algorithm.Finally,a preliminary application of the proposed method to the DDC is carried out.展开更多
In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the ex...In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.展开更多
Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundar...Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in and -norms, and costs less CPU calculation time and random access memory.展开更多
In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive an...In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the O(h^4) term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions.展开更多
In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is de...In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.展开更多
基金Supported by the National Natural Science Foundation of China (10971219)Shanghai Education Research and Innovation Project (10YZ185)Shanghai University Research Special Foundation for Outstanding Young Teachers (sjr09015)
文摘We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
基金Supported by the School Youth Foundation Project Funding of Anqing Teacher’s College(KJ201108)
文摘In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
文摘In this paper, a fourth-order viscoelastic plate vibration equation is transformed into a set of two second-order differential equations by introducing an intermediate variable. A three-layer compact difference scheme for the initial-boundary value problem of the viscoelastic plate vibration equation is established. Then the stability and convergence of the difference scheme are analyzed by the energy method, and the convergence order is <img src="Edit_0a250b60-7c3c-4caf-8013-5e302d6477ab.png" alt="" />. Finally, some numerical examples are given of which results verify the accuracy and validity of the scheme.
基金supported in part by Natural Sciences Foundation of Zhejiang Province(No.LZ23A010007)in part by the National Natural Science Foundation of China(No.12271518)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20201149)the Fundamental Research Funds of Xuzhou(No.KC21019)
文摘In this paper,we analyze and test a high-order compact difference scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki equation under the Neumann boundary condition.A three-level average technique is utilized,thereby leading to a linearized difference scheme.The main work lies in the pointwise error estimate in H^(2)-norm.The optimal fourth-order convergence order is proved in combination of induction,the energy method and the embedded inequality.Moreover,we establish the stability of the difference scheme with respect to the initial value under very mild condition,however,does not require any step ratio restriction.Extensive numerical examples with/without exact solutions under diverse cases are implemented to validate the theoretical results.
基金supported by Natural Science Foundation of China (Grant No. 10871044)
文摘This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.
基金supported by the National Natural Science Foundation of China(10971062)the Scientific Research Foundation of Central South University of Forestry and Technology.
文摘This paper is concerned with a compact difference scheme with the truncation error of order 3/2 for time and order 4 for space to an evolution equation with a weakly singular kernel.The integral term is treated by means of the second order convolution quadrature suggested by Lubich.The stability and convergence are proved by the energy method.A numerical experiment is reported to verify the theoretical predictions.
基金supported by the National Natural Science Foundation of China(No.11701103,11801095)Young Top-notch Talent Program of Guangdong Province(No.2017GC010379)+2 种基金Natural Science Foundation of Guangdong Province(No.2022A1515012147,2019A1515010876,2017A030310538)the Project of Science and Technology of Guangzhou(No.201904010341,202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(2021023)。
文摘In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.
基金the National Natural Science Foundation of China
文摘A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
基金The project was financially supported by the National Natural Science Foundation of China (Grant No50479053)
文摘Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.
文摘Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by the Project for the National Natural Science Foundation of China(No.12261103).
文摘In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior.
基金supported by the National Natural Science Foundation of China(Nos.11872151,11372075,and 91330112)。
文摘A high resolution upwind compact streamfunction numerical algorithm for two-dimensional(2D)double-diffusive convection(DDC)is developed.The unsteady Navier-Stokes(N-S)equations in the streamfunction-velocity form and the scalar temperature and concentration equations are used.An optimized third-order upwind compact(UCD3 opt)scheme with a low dispersion error for the first derivatives is utilized to approximate the third derivatives of the streamfunction in the advection terms of the N-S equations and the first derivatives in the advection terms of the scalar temperature and concentration equations.The remaining first derivatives of the streamfunction(velocity),temperature,and concentration variables used in the governing equations are discretized by the fourth-order compact Pade(SCD4)schemes.With the temperature and concentration variables and their approximate values of the first derivatives obtained by the SCD4 schemes,the explicit fourth-order compact schemes are suggested to approximate the second derivatives of temperature and concentration in the diffusion terms of the energy and concentration equations.The discretization of the temporal term is executed with the second-order Crank-Nicolson(C-N)scheme.To assess the spatial behavior capability of the established numerical algorithm and verify the developed computer code,the DDC flow is numerically solved.The obtained results agree well with the benchmark solutions and some accurate results available in the literature,verifying the accuracy,effectiveness,and robustness of the provided algorithm.Finally,a preliminary application of the proposed method to the DDC is carried out.
文摘In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.
文摘Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in and -norms, and costs less CPU calculation time and random access memory.
基金supported by Natural Science Foundation of China under grant number 10471047
文摘In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the O(h^4) term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions.
文摘In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.