A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative metho...A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.展开更多
基金supported in part by NSF of China No.10571059E-Institutes of Shanghai Municipal Education Commission No.E03004+4 种基金Shanghai Priority Academic Discipline,and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education MinistrySF of Shanghai No.04JC14062the fund of Chinese Education Ministry No.20040270002the Shanghai Leading Academic Discipline Project No.T0401the fund for E-Institutes of Shanghai Municipal Education Commission No.E03004 and the fund No.04DB15 of Shanghai Municipal Education Commission
文摘A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.