期刊文献+
共找到193,655篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of Energy Efficiency and Analysis of Influencing Factors of Company CW’s Manufacturing Workshops
1
作者 Pengju Zhang 《Journal of Electronic Research and Application》 2024年第2期18-26,共9页
In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 1... In this work,the Slacks-Based Measure(SBM)model within Data Envelopment Analysis was employed to establish a set of indicators for evaluating the energy efficiency of manufacturing workshops.The energy efficiency of 12 Company CW’s manufacturing workshops from 2016 to 2022 was assessed.The findings indicated that aside from a few workshops operating at the production frontier,the rest exhibit significant fluctuations in energy efficiency and generally low energy efficiency.Subsequently,a combined GRA-Tobit analysis model was introduced to identify factors influencing the energy efficiency of Company CW’s manufacturing workshops.Regression analysis revealed that technological investments,employee quality,workshop production scale,investment in clean energy,and the level of pollution control all significantly impact the energy efficiency of Company CW’s manufacturing workshops.By evaluating the energy efficiency of Company CW’s manufacturing workshops and studying their influencing factors,this research aids company managers in understanding the energy efficiency of the manufacturing process.It optimizes the combination of various production elements,thereby offering effective guidance for improving the energy efficiency issues of the company’s manufacturing workshops,which can contribute to enhancing the corporation’s overall energy efficiency. 展开更多
关键词 Manufacturing workshop energy efficiency Energy efficiency evaluation Data Envelopment Analysis(DEA) GRA-Tobit model
下载PDF
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:1
2
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 Tight sandstone Ordos Basin Fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
下载PDF
Influence mechanism of government subsidy on the green transformation of coal company in China
3
作者 Xiaolei Li Changsong Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期1033-1040,共8页
The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanis... The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanism of government subsidies on the green transformation using data from the listed coal companies in China from 2007 to 2022.According to our findings and hypothesis testing,previous government subsidies did not have a significant direct impact on coal companies’green transformation.Nevertheless,government subsidies can help coal companies transition to greener practices by promoting innovative green initiatives.Furthermore,we confirmed an indirect route:that government subsidies enable the adoption of low-carbon initiatives,which in turn could facilitate the transition of coal companies towards green practices.In addition,we discovered that the coal company’s digitization will improve this indirect route.Thus,we propose increasing the effectiveness of government subsidies in facilitating coal companies’transition to green practices by focusing on technological advancements and enhancing company digitalization. 展开更多
关键词 Government subsidy Green transformation Coal company DIGITALIZATION INNOVATION
下载PDF
High-Efficiency Dynamic Terahertz Deflector Utilizing a Mechanically Tunable Metasurface
4
作者 Zhenci Sun Chao Liang +8 位作者 Chen Chen Xiayu Wang Enze Zhou Xiaomeng Bian Yuanmu Yang Rui You Xiaoguang Zhao Jiahao Zhao Zheng You 《Research》 SCIE EI CSCD 2024年第3期585-594,共10页
Terahertz (THz) wave manipulation, especially the beam deflection, plays an essential role in various applications, such as next-generation communication, space exploration, and high-resolution imaging. Current THz op... Terahertz (THz) wave manipulation, especially the beam deflection, plays an essential role in various applications, such as next-generation communication, space exploration, and high-resolution imaging. Current THz optical components and devices are hampered by their large bulk sizes and passive responses, limiting the development of high-performance, miniaturized THz microsystems. Tunable metasurfaces offer a powerful dynamic optical platform for controlling the propagation of electromagnetic waves. In this article, we presented a mechanically tunable metasurface (MTM), which can achieve terahertz beam deflection and vary the intensity of the anomalous reflected terahertz wave by changing the air gap between the metallic resonator (MR) array with phase discontinuities and Au ground plane. The absence of lossy spacer materials substantially enhances deflection efficiency. The device was fabricated by a combination of the surface and bulk-micromachining processes. The THz beam steering capability was characterized using terahertz time domain spectroscopy. When the air gap is 50 μm, the maximum deflection coefficient reaches 0.60 at 0.61 THz with a deflection angle of ~44.5°, consistent with theoretical predictions. We further established an electrically tunable miniaturized THz device for dynamic beam steering by introducing a micro voice coil motor to control the air gap continuously. It is shown that our designed MTM demonstrates a high modulation depth of deflection coefficient (~ 62.5%) in the target steered angle at the operating frequency. Our results showcase the potential of the proposed MTM as a platform for high-efficiency THz beam manipulation. 展开更多
关键词 TUNABLE efficiency RESONATOR
原文传递
Enhancing Energy Efficiency with a Dynamic Trust Measurement Scheme in Power Distribution Network
5
作者 Yilei Wang Xin Sun +4 位作者 Guiping Zheng Ahmar Rashid Sami Ullah Hisham Alasmary Muhammad Waqas 《Computers, Materials & Continua》 SCIE EI 2024年第3期3909-3927,共19页
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e... The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field. 展开更多
关键词 IIoT trusted measure energy efficient
下载PDF
The Impact of Privatization on Terminal Efficiency: A Case Study of Tema Port
6
作者 Bernard Kwei Tetteh Calvin Elorm Atsunyo Alex Boateng 《Journal of Transportation Technologies》 2024年第3期358-371,共14页
Port and terminal efficiency are of utmost importance to the container shipping industry due to their significance in enhancing the competitive advantage of ports within a region. Consequently, there have always been ... Port and terminal efficiency are of utmost importance to the container shipping industry due to their significance in enhancing the competitive advantage of ports within a region. Consequently, there have always been notable variations of studies around it. This paper analyzes the impact of privatization on terminal efficiency using the Port of Tema as a Case Study. The main objective of this paper is to analyze the efficiency trends of the public and private terminals in the port over the years. To achieve this objective, DEA-CCR methodology was employed to calculate the annual technical efficiency trends of the private and public terminals using four input variables and three output variables. The main results of the paper indicated that the public and private terminals were efficient for multiple years. However, the efficiency scores over the years demonstrated inconsistency, exhibiting notable fluctuations. The findings of this study will aid policymakers across the region on policies relating to the efficiency and ownership structure of ports and terminals. 展开更多
关键词 PRIVATIZATION Terminal efficiency DEA Tema Port
下载PDF
Effect of building energy efficiency standards on carbon emission efficiency in commercial buildings
7
作者 Xia Wang Qi Ye +1 位作者 Yan Du Mao Zhou 《Chinese Journal of Population,Resources and Environment》 2024年第3期250-257,共8页
The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,expl... The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation. 展开更多
关键词 Commercial buildings Carbon emissions efficiency Building energy efficiency standards Slack-based measure–data development analysis Difference in differences
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
8
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE NITRATE transporter nitrogen utilization efficiency
下载PDF
Enhancing I^(0)/I^(-)Conversion Efficiency by Starch Confinement in Zinc-lodine Battery
9
作者 Danyang Zhao Qiancheng Zhu +4 位作者 Qiancheng Zhou Wenming Zhang Ying Yu Shuo Chen Zhifeng Ren 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期114-120,共7页
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li... The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs. 展开更多
关键词 aqueous battery conversion efficiency iodine-zinc battery starch confinement
下载PDF
Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China
10
作者 Limei YANG Jun GE +4 位作者 Yipeng CAO Yu LIU Xing LUO Shiyao WANG Weidong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2259-2275,共17页
Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d... Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming. 展开更多
关键词 urban trees cooling efficiency China's cities EVAPOTRANSPIRATION SUMMER hot days
下载PDF
Mg-doped,carbon-coated,and prelithiated SiO_(x) as anode materials with improved initial Coulombic efficiency for lithium-ion batteries
11
作者 Bin Liu Jie Liu +1 位作者 Cheng Zhong Wenbin Hu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期204-214,共11页
Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium si... Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium silicates during the first cycle.In this work,we modify SiO_(x) by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent.We show that Mg reduces SiO_(2) in SiO_(x) to Si and forms MgSiO_(3) or Mg_(2)SiO_(4).The MgSiO_(3) or Mg_(2)SiO_(4) are mainly distributed on the surface of SiO_(x),which suppresses the irreversible lithium-ion loss and enhances the ICE of SiO_(x).However,the formation of MgSiO_(3) or Mg_(2)SiO_(4) also sacrifices the capacity of SiO_(x).Therefore,by controlling the reaction process between Mg and SiO_(x),we can tune the phase composition,proportion,and morphology of the Mg-doped SiO_(x) and manipulate the performance.We obtain samples with a capacity of 1226 mAh g^(–1) and an ICE of 84.12%,which show significant improvement over carbon-coated SiO_(x) without Mg doping.By the synergistical modification of both Mg doping and prelithiation,the capacity of SiO_(x) is further increased to 1477 mAh g^(–1) with a minimal compromise in the ICE(83.77%). 展开更多
关键词 initial Coulombic efficiency lithium-ion batteries magnesium doping prelithiation silicon suboxide
下载PDF
Multifunctional interfacial molecular bridge enabled by an aggregation-induced emission strategy for enhancing efficiency and UV stability of perovskite solar cells
12
作者 Shuhang Bian Yuqi Wang +13 位作者 Fancong Zeng Zhongqi Liu Bin Liu Yanjie Wu Long Shao Yongzhi Shao Huan Zhang Shuainan Liu Jin Liang Xue Bai Lin Xu Donglei Zhou Biao Dong Hongwei Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期588-595,I0013,共9页
The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c... The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells Aggregation-induced emission Defect passivation efficiency UV stability
下载PDF
Machine learning optimization strategy of shaped charge liner structure based on jet penetration efficiency
13
作者 Ziqi Zhao Tong Li +6 位作者 Donglin Sheng Jian Chen Amin Yan Yan Chen Haiying Wang Xiaowei Chen Lanhong Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期23-41,共19页
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate... Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL. 展开更多
关键词 Jet penetration efficiency Shaped charge liner FEM-ML XGBOOST MFO High-entropy alloy
下载PDF
Integrated assessment of yield,nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production
14
作者 Zijuan Ding Ren Hu +4 位作者 Yuxian Cao Jintao Li Dakang Xiao Jun Hou Xuexia Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3186-3199,共14页
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of... Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss. 展开更多
关键词 ratoon rice controlled-release urea YIELD nitrogen use efficiency economic benefit
下载PDF
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
15
作者 Runlong Gao Rui Chen +10 位作者 Pengying Wan Xiao Ouyang Qiantao Lei Qi Deng Xinyu Guan Guangda Niu Jiang Tang Wei Chen Zonghao Liu Xiaoping Ouyang Linyue Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期160-167,共8页
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.... Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells. 展开更多
关键词 formamidinium-cesium perovskite PHOSPHOR photovoltaic converter power conversion efficiency radio-photovoltaic cell
下载PDF
High Energy Efficiency Dynamic Connected Hybrid Precoding for mm Wave Massive MIMO Systems
16
作者 Du Ruiyan Liu Huajing +1 位作者 Li Tiangui Liu Fulai 《China Communications》 SCIE CSCD 2024年第5期36-44,共9页
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ... This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit. 展开更多
关键词 energy efficiency hybrid precoding mmWave optimized resolution phase shifter
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
17
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells Power conversion efficiency Structural order Charge generation
下载PDF
Cooperative activation of sodium channels for downgrading the energy efficiency in neuronal information processing
18
作者 严浩然 颜家琦 +1 位作者 俞连春 邵玉峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期758-763,共6页
The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a... The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases. 展开更多
关键词 energy efficiency ion channel noise action potential generation neuronal dynamics
下载PDF
High-Efficiency Dynamic Scanning Strategy for Powder Bed Fusion by Controlling Temperature Field of the Heat-Affected Zone
19
作者 Xiaokang Huang Xiaoyong Tian +5 位作者 Qi Zhong Shunwen He Cunbao Huo Yi Cao Zhiqiang Tong Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期203-214,共12页
Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature fiel... Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment. 展开更多
关键词 Powder bed fusion efficiency LARGE-SCALE Spot size Heat-affected zone(HAZ)
下载PDF
Multi-layer quasi-zero-stiffness meta-structure for high-efficiency vibration isolation at low frequency
20
作者 Jiahao ZHOU Jiaxi ZHOU +3 位作者 Hongbin PAN Kai WANG Changqi CAI Guilin WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1189-1208,共20页
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us... An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency. 展开更多
关键词 quasi-zero stiffness(QZS) meta-structure high efficiency low frequency vibration isolation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部