Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec...Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.展开更多
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a...Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purp...This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.展开更多
Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 ...Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.展开更多
The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from ...The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.展开更多
As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable...As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable homes.Taking the urban water system of Nantong as an example,Nantong Water Resources Bureau issued R evision of Nantong Urban Water System Planning in 2017,and put forward the construction of the"two circles,eight lakes and nine veins"water system layout,giving new vitality to the urban water system.In view of problems existing in newly excavated artificial landscape lakes,such as fragile water ecosystem,strong eutrophication trend,poor environmental sensory effect and unsatisfactory water landscape effect,it is urgent to study the in-situ water ecological restoration technique of"algae-controlling zooplankton+submerged plant community"to build a"grass-type clear water"ecosystem for artificial landscape lakes,so as to improve the water sensory index and self-purification ability and finally realize the double improvement of"sensory effect and water quality"of artificial landscape lakes.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments re...Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
Currently,chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems.To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food sup...Currently,chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems.To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system,Japan promulgated its Environmental Quality Standards for the Conservation of Aquatic Life(EQS-CAL),based on its own aquatic life water quality criteria(ALWQC)derivation method and application mechanism.Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies.Key experiences from Japan's EQS-CAL system include:(1)Classifying six types of aquatic organisms according to their adaptability to habitat status;(2)Using a risk-based chemical screening system for three groups of chemical pollutants;(3)Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species;(4)Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops.This paper offers scientific references for other jurisdictions,aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary...A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.展开更多
Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturba...Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturbance on drinking water and natural resources. Effective communication and knowledge exchange across scientists and stakeholders (i.e., drinking water managers) is essential for constructively responding to such landscape scale disturbances, providing improved adaptive capacity through knowledge sharing. An assessment of stakeholder knowledge levels, information needs, primary concerns, and suggested communication strategies were conducted via an online elicitation survey and World Science Café workshops. Knowledge levels, assessed via a survey of local water managers and experts, were relatively low with approximately half of the respondents reporting little to no knowledge of the effects of mountain pine beetle on drinking water quality and quantity, thereby indicating limited knowledge exchange between scientists and drinking water stakeholders. Increased accessibility and dissemination of research findings pertinent to the mountain pine beetle epidemic’s effects on drinking water quality and quantity is necessary for natural resource management. Recommendations for improved communication among scientists and drinking water stakeholders in particular and forest health in general include dispersal of non-academic research summaries, information exchange through existing media and community resources, demonstration projects, and information clearinghouses. This information provides a better understanding of the challenges, concerns, and first-hand experience of stakeholders of a landscape disturbance issue to apply this knowledge to enhance land management practice and how researchers on this overall project enhanced science communication efforts.展开更多
Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer product...Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.展开更多
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o...Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasi...Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.展开更多
基金supported by Center for Resiliency(CfR)at Lamar University(Grant No.22PSSO1).
文摘Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.
基金funding from the European Union’s Horizon 2020 Research&Innovation Programme(2211)under the Partnership for Research and Innovation in the Mediterranean Area(PRIMA)Project"SHARInG-MeD"from the Directorate-General for Scientific Research and Technological Development(DGRSDT)under the Projets de Recherche Formation-Universitaire(PRFU)Projects(D00L02UN120120230002,D01N01UN120120230005)。
文摘Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
文摘This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.
文摘Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.
文摘The study carried out on the waters of the Méné River led to an overall assessment of its water quality during the dry season and the rainy season. The analysis focused on eight (8) water samples taken from the river during a period of dry season (January-February) and a period of rainy season (June and September). The various physicochemical parameters were measured according to Afnor standardized methods. The readings of temperature, turbidity, pH and conductivity made it possible to account for the disturbances occurring in water quality. A temporal variation correlated with the seasons (dry or rainy) is noted. Turbidity depends on the concentration of suspended solids (SS) in the water and drained particles and therefore on the seasons. Just like the temperature, the conductivity changes with the season. The waters of the Méné River are generally acidic. The results obtained show that there is a low level of pollution by chlorides, phosphates, nitrites and nitrates. A slight pollution of the waters of Méné in organic matter (chemical oxygen demand values are less than 25 mg∙L−1 during dry season and 32.33 ± 4.73 mg∙L−1 during rainy season) was observed. The concentrations of metallic trace elements such as iron, manganese and aluminum indicate significant pollution of these waters by these elements. Overall, the waters of the Méné River are of satisfactory quality because all the physicochemical parameters analyzed have values below standards during the dry season as well as during the rainy season with the exception of COD and a few metallic trace elements.
基金Supported by Jiangsu Province Engineering Research Center of Agricultural and Rural Pollution Prevention Technology and Equipment(Sufagaigaojifa[2022]No.1103)Innovation and Entrepreneurship Incubation Program for Students in Vocational Colleges of Jiangsu Province in 2023(G-2023-1257)+3 种基金High-end Training Program for Teachers Professional Leaders in Higher Vocational Colleges of Jiangsu Province in 2023(Sugaozhipeihan[2023]No.9)General Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province in 2023(2023SJYB1785)Project of Nantong Science and Technology Bureau(MSZ2022176MS22022120).
文摘As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable homes.Taking the urban water system of Nantong as an example,Nantong Water Resources Bureau issued R evision of Nantong Urban Water System Planning in 2017,and put forward the construction of the"two circles,eight lakes and nine veins"water system layout,giving new vitality to the urban water system.In view of problems existing in newly excavated artificial landscape lakes,such as fragile water ecosystem,strong eutrophication trend,poor environmental sensory effect and unsatisfactory water landscape effect,it is urgent to study the in-situ water ecological restoration technique of"algae-controlling zooplankton+submerged plant community"to build a"grass-type clear water"ecosystem for artificial landscape lakes,so as to improve the water sensory index and self-purification ability and finally realize the double improvement of"sensory effect and water quality"of artificial landscape lakes.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.
文摘Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
基金National Natural Science Foundation of China(No.42394150 and 42177240)National Key R&D Program of China(No.2021YFC3201000)。
文摘Currently,chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems.To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system,Japan promulgated its Environmental Quality Standards for the Conservation of Aquatic Life(EQS-CAL),based on its own aquatic life water quality criteria(ALWQC)derivation method and application mechanism.Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies.Key experiences from Japan's EQS-CAL system include:(1)Classifying six types of aquatic organisms according to their adaptability to habitat status;(2)Using a risk-based chemical screening system for three groups of chemical pollutants;(3)Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species;(4)Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops.This paper offers scientific references for other jurisdictions,aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.
文摘A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.
文摘Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturbance on drinking water and natural resources. Effective communication and knowledge exchange across scientists and stakeholders (i.e., drinking water managers) is essential for constructively responding to such landscape scale disturbances, providing improved adaptive capacity through knowledge sharing. An assessment of stakeholder knowledge levels, information needs, primary concerns, and suggested communication strategies were conducted via an online elicitation survey and World Science Café workshops. Knowledge levels, assessed via a survey of local water managers and experts, were relatively low with approximately half of the respondents reporting little to no knowledge of the effects of mountain pine beetle on drinking water quality and quantity, thereby indicating limited knowledge exchange between scientists and drinking water stakeholders. Increased accessibility and dissemination of research findings pertinent to the mountain pine beetle epidemic’s effects on drinking water quality and quantity is necessary for natural resource management. Recommendations for improved communication among scientists and drinking water stakeholders in particular and forest health in general include dispersal of non-academic research summaries, information exchange through existing media and community resources, demonstration projects, and information clearinghouses. This information provides a better understanding of the challenges, concerns, and first-hand experience of stakeholders of a landscape disturbance issue to apply this knowledge to enhance land management practice and how researchers on this overall project enhanced science communication efforts.
文摘Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.
文摘Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
文摘Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.