期刊文献+
共找到3,005篇文章
< 1 2 151 >
每页显示 20 50 100
Fault DiagnosisMethod of Energy Storage Unit of Circuit Breakers Based on EWT-ISSA-BP
1
作者 Tengfei Li Wenhui Zhang +3 位作者 Ke Mi Qingming Lin Shuangwei Zhao Jiayi Song 《Energy Engineering》 EI 2024年第7期1991-2007,共17页
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba... Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB. 展开更多
关键词 Low voltage circuit breakers energy storage motor current sparrow search algorithm empirical wavelet transform fault diagnosis
下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
2
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved BP algorithm optimization genetic algorithm learning speed
下载PDF
Digital Twin-Based Automated Fault Diagnosis in Industrial IoT Applications
3
作者 Samah Alshathri Ezz El-Din Hemdan +1 位作者 Walid El-Shafai Amged Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第4期183-196,共14页
In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and ... In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and Industrial Internet of Things (IIoT). The main concept of the DT isto provide a comprehensive tangible, and operational explanation of anyelement, asset, or system. However, it is an extremely dynamic taxonomydeveloping in complexity during the life cycle that produces a massive amountof engendered data and information. Likewise, with the development of AI,digital twins can be redefined and could be a crucial approach to aid theInternet of Things (IoT)-based DT applications for transferring the data andvalue onto the Internet with better decision-making. Therefore, this paperintroduces an efficient DT-based fault diagnosis model based on machinelearning (ML) tools. In this framework, the DT model of the machine isconstructed by creating the simulation model. In the proposed framework,the Genetic algorithm (GA) is used for the optimization task to improvethe classification accuracy. Furthermore, we evaluate the proposed faultdiagnosis framework using performance metrics such as precision, accuracy,F-measure, and recall. The proposed framework is comprehensively examinedusing the triplex pump fault diagnosis. The experimental results demonstratedthat the hybrid GA-ML method gives outstanding results compared to MLmethods like LogisticRegression (LR), Na飗e Bayes (NB), and SupportVectorMachine (SVM). The suggested framework achieves the highest accuracyof 95% for the employed hybrid GA-SVM. The proposed framework willeffectively help industrial operators make an appropriate decision concerningthe fault analysis for IIoT applications in the context of Industry 4.0. 展开更多
关键词 Automated fault diagnosis control system ML AI CC IIoT digital twins genetic algorithm GA-ML technique
下载PDF
Application of Improved Genetic Algorithm in Network Fault Diagnosis Expert System 被引量:4
4
作者 苏利敏 侯朝桢 +1 位作者 戴忠健 张雅静 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期225-229,共5页
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ... Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better. 展开更多
关键词 expert system knowledge acquisition fault diagnosis genetic algorithm
下载PDF
Forward and backward models for fault diagnosis based on parallel genetic algorithms 被引量:10
5
作者 Yi LIU Ying LI +1 位作者 Yi-jia CAO Chuang-xin GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1420-1425,共6页
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul... In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems. 展开更多
关键词 Forward and backward models fault diagnosis Global single-population master-slave genetic algorithms (GPGAs) Parallel computation
下载PDF
Iterative Learning Fault Diagnosis Algorithm for Non-uniform Sampling Hybrid System 被引量:2
6
作者 Hongfeng Tao Dapeng Chen Huizhong Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期534-542,共9页
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys... For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm. 展开更多
关键词 Equivalent fault model fault diagnosis iterative learning algorithm non-uniform sampling hybrid system virtual fault
下载PDF
A Performance Fault Diagnosis Method for SaaS Software Based on GBDT Algorithm 被引量:3
7
作者 Kun Zhu Shi Ying +4 位作者 Nana Zhang Rui Wang Yutong Wu Gongjin Lan Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第3期1161-1185,共25页
SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural... SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural design or complex environments.It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs.For this challenge,we propose a novel performance fault diagnosis method for SaaS software based on GBDT(Gradient Boosting Decision Tree)algorithm.In particular,we leverage the monitoring mean to obtain the performance log and warning log when the SaaS software system runs,and establish the performance fault type set and determine performance log feature.We also perform performance fault type annotation for the performance log combined with the analysis result of the warning log.Moreover,we deal with the incomplete performance log and the type non-equalization problem by using the mean filling for the same type and combination of SMOTE(Synthetic Minority Oversampling Technique)and undersampling methods.Finally,we conduct an empirical study combined with the disaster reduction system deployed on the cloud platform,and it demonstrates that the proposed method has high efficiency and accuracy for the performance diagnosis when SaaS software system runs. 展开更多
关键词 GBDT algorithm SaaS software performance log performance fault diagnosis
下载PDF
Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes 被引量:2
8
作者 Jiaxin Zhang Wenjia Luo +1 位作者 Yiyang Dai Yuman Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期54-70,共17页
Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(... Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path. 展开更多
关键词 Cycle temporal algorithm fault diagnosis Dynamic kernel principal component analysis Multiway dynamic kernel principal component analysis Reconstruction-based contribution
下载PDF
A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems 被引量:1
9
作者 Erfu Yang Hongjun Xiang +1 位作者 Dongbing Gu Zhenpeng Zhang 《International Journal of Automation and computing》 EI 2007年第3期255-261,共7页
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi... Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future. 展开更多
关键词 Liquid rocket propulsion systems inverse problem fault diagnosis genetic algorithm comparative study.
下载PDF
Cultural Binary Particle Swarm Optimization Algorithm and Its Application in Fault Diagnosis 被引量:1
10
作者 黄海燕 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2009年第5期474-481,共8页
Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence ... Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained. 展开更多
关键词 cultural algorithm cultural binary particleswarm optimization algorithm fault feature selection fault diagnosis
下载PDF
Research on the Algorithm of Avionic Device Fault Diagnosis Based on Fuzzy Expert System 被引量:6
11
作者 LI Jie SHEN Shi-tuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期223-229,共7页
Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault qu... Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle. 展开更多
关键词 fuzzy expert system fault query network fault answer best selection algorithm fuzzy theory test-diagnosis fault unit
下载PDF
GA-ANN Algorithm and Its Application in Fault Diagnosis of Power Transformer
12
作者 王大忠 徐文 +1 位作者 周泽存 陈珩 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期71-75,共5页
A main weak point of back propagation (BP) algorithm is that the search procedure easily falls into the local minimum. In order to solve this problem, a GA ANN algorithm is proposed and applied to fault diagnosis o... A main weak point of back propagation (BP) algorithm is that the search procedure easily falls into the local minimum. In order to solve this problem, a GA ANN algorithm is proposed and applied to fault diagnosis of power transformers. Some examples s 展开更多
关键词 GENETIC algorithm artificial NEURAL network fault diagnosis
下载PDF
Research on Genetic Algorithm Based Knowledge Auto Acquisition for Fault Diagnosis
13
作者 张雪江 朱向阳 +1 位作者 钟秉林 黄仁 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期32-37,共6页
In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained,... In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained, knowledge for fault diagnosis can be 展开更多
关键词 GENETIC algorithm KNOWLEDGE AUTO ACQUISITION fault diagnosis
下载PDF
Learning Fault Diagnosis Knowledge for a FCC Expert System by Genetic Algorithms
14
作者 陈恩红 《High Technology Letters》 EI CAS 1997年第2期22-26,共5页
This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalyti... This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalytic and cracking unit. The practical running results show that more effective fault matrixes can be generated by GAFMLS, and the reliability and precision of FCC expert system are improved. 展开更多
关键词 GENETIC algorithms fault diagnosis EXPERT systems
下载PDF
FAULT DIAGNOSIS FOR ANALOG CIRCUITS WITH TOLERANCE—MINIMUM TOLERANCE ESTIMATION ALGORITHM
15
作者 杨嘉伟 杨士元 陆强 《Journal of Electronics(China)》 1994年第1期28-36,共9页
Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this... Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this’method, an effective estimation of the equivalent fault sources can be obtained with less computing time. It is especially worthwhile to point out that an adaptive sub-optimum algorithm, which comes from the above method, requires even less computing-labor and is particularly suitable to more complicated circuits as well as real-time fault location. 展开更多
关键词 CIRCUIT with TOLERANCE it-fault diagnosis Minimum TOLERANCE ESTIMATION Suboptimum algorithm
下载PDF
Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH-SC method 被引量:9
16
作者 Kun Li Xian-Wen Gao +1 位作者 Hai-Bo Zhou Ying Han 《Petroleum Science》 SCIE CAS CSCD 2015年第1期135-147,共13页
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac... Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm. 展开更多
关键词 Sucker rod pumping systems fault diagnosis Spectral clustering Automatic clustering Fast black hole algorithm
下载PDF
The Research of the Equation Model on the System-level Fault Diagnosis 被引量:5
17
作者 Hengnong Xuan1, Dafang Zhang2, Yue Wu3, Minwei He4 (1,4: Dept. of Computer, Wuyi University, Jiangmen, Guangdong, 529020, China (2: Dept. of Computer, Hunan University, Changsha, 410082, China ) (3: Institute of Computer Science and Engineering, Univers 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期148-157,共10页
In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equat... In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models. 展开更多
关键词 PMC MODEL EQUATION MODEL ex-test system-level fault diagnosis DIAGNOSTIC algorithm
下载PDF
Aircraft Engine Gas Path Fault Diagnosis Based on Hybrid PSO-TWSVM 被引量:6
18
作者 Du Yanbin Xiao Lingfei +1 位作者 Chen Yusheng Ding Runze 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期334-342,共9页
Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is intr... Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%. 展开更多
关键词 aircraft engines fault diagnosis TWIN support VECTOR machine (TWSVM) hybrid PARTICLE SWARM optimization (HPSO) algorithm mixed KERNEL function
下载PDF
Fault Diagnosis Approach of Local Ventilation System in Coal Mines Based on Multidisciplinary Technology 被引量:18
19
作者 GONG Xiao-yan XUE He +1 位作者 TAO Xin-li HU Ning 《Journal of China University of Mining and Technology》 EI 2006年第3期317-320,共4页
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ... In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines. 展开更多
关键词 fault diagnosis local ventilation rough set theory genetic algorithm IDSS
下载PDF
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
20
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 FUZZY support VECTOR machine FUZZY clustering SAMPLE WEIGHT GENETIC algorithm parameter optimization fault diagnosis
下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部