Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and ...In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and Industrial Internet of Things (IIoT). The main concept of the DT isto provide a comprehensive tangible, and operational explanation of anyelement, asset, or system. However, it is an extremely dynamic taxonomydeveloping in complexity during the life cycle that produces a massive amountof engendered data and information. Likewise, with the development of AI,digital twins can be redefined and could be a crucial approach to aid theInternet of Things (IoT)-based DT applications for transferring the data andvalue onto the Internet with better decision-making. Therefore, this paperintroduces an efficient DT-based fault diagnosis model based on machinelearning (ML) tools. In this framework, the DT model of the machine isconstructed by creating the simulation model. In the proposed framework,the Genetic algorithm (GA) is used for the optimization task to improvethe classification accuracy. Furthermore, we evaluate the proposed faultdiagnosis framework using performance metrics such as precision, accuracy,F-measure, and recall. The proposed framework is comprehensively examinedusing the triplex pump fault diagnosis. The experimental results demonstratedthat the hybrid GA-ML method gives outstanding results compared to MLmethods like LogisticRegression (LR), Na飗e Bayes (NB), and SupportVectorMachine (SVM). The suggested framework achieves the highest accuracyof 95% for the employed hybrid GA-SVM. The proposed framework willeffectively help industrial operators make an appropriate decision concerningthe fault analysis for IIoT applications in the context of Industry 4.0.展开更多
Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is ...Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.展开更多
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural...SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural design or complex environments.It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs.For this challenge,we propose a novel performance fault diagnosis method for SaaS software based on GBDT(Gradient Boosting Decision Tree)algorithm.In particular,we leverage the monitoring mean to obtain the performance log and warning log when the SaaS software system runs,and establish the performance fault type set and determine performance log feature.We also perform performance fault type annotation for the performance log combined with the analysis result of the warning log.Moreover,we deal with the incomplete performance log and the type non-equalization problem by using the mean filling for the same type and combination of SMOTE(Synthetic Minority Oversampling Technique)and undersampling methods.Finally,we conduct an empirical study combined with the disaster reduction system deployed on the cloud platform,and it demonstrates that the proposed method has high efficiency and accuracy for the performance diagnosis when SaaS software system runs.展开更多
Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(...Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path.展开更多
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi...Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.展开更多
Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence ...Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.展开更多
Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault qu...Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.展开更多
A main weak point of back propagation (BP) algorithm is that the search procedure easily falls into the local minimum. In order to solve this problem, a GA ANN algorithm is proposed and applied to fault diagnosis o...A main weak point of back propagation (BP) algorithm is that the search procedure easily falls into the local minimum. In order to solve this problem, a GA ANN algorithm is proposed and applied to fault diagnosis of power transformers. Some examples s展开更多
In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained,...In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained, knowledge for fault diagnosis can be展开更多
This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalyti...This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalytic and cracking unit. The practical running results show that more effective fault matrixes can be generated by GAFMLS, and the reliability and precision of FCC expert system are improved.展开更多
Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this...Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this’method, an effective estimation of the equivalent fault sources can be obtained with less computing time. It is especially worthwhile to point out that an adaptive sub-optimum algorithm, which comes from the above method, requires even less computing-labor and is particularly suitable to more complicated circuits as well as real-time fault location.展开更多
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac...Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.展开更多
In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equat...In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.展开更多
Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is intr...Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%.展开更多
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ...In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.展开更多
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ...A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.展开更多
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R197),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and Industrial Internet of Things (IIoT). The main concept of the DT isto provide a comprehensive tangible, and operational explanation of anyelement, asset, or system. However, it is an extremely dynamic taxonomydeveloping in complexity during the life cycle that produces a massive amountof engendered data and information. Likewise, with the development of AI,digital twins can be redefined and could be a crucial approach to aid theInternet of Things (IoT)-based DT applications for transferring the data andvalue onto the Internet with better decision-making. Therefore, this paperintroduces an efficient DT-based fault diagnosis model based on machinelearning (ML) tools. In this framework, the DT model of the machine isconstructed by creating the simulation model. In the proposed framework,the Genetic algorithm (GA) is used for the optimization task to improvethe classification accuracy. Furthermore, we evaluate the proposed faultdiagnosis framework using performance metrics such as precision, accuracy,F-measure, and recall. The proposed framework is comprehensively examinedusing the triplex pump fault diagnosis. The experimental results demonstratedthat the hybrid GA-ML method gives outstanding results compared to MLmethods like LogisticRegression (LR), Na飗e Bayes (NB), and SupportVectorMachine (SVM). The suggested framework achieves the highest accuracyof 95% for the employed hybrid GA-SVM. The proposed framework willeffectively help industrial operators make an appropriate decision concerningthe fault analysis for IIoT applications in the context of Industry 4.0.
文摘Knowledge acquisition is the “bottleneck” of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金This work is supported in part by the National Science Foundation of China(61672392,61373038)in part by the National Key Research and Development Program of China(No.2016YFC1202204).
文摘SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural design or complex environments.It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs.For this challenge,we propose a novel performance fault diagnosis method for SaaS software based on GBDT(Gradient Boosting Decision Tree)algorithm.In particular,we leverage the monitoring mean to obtain the performance log and warning log when the SaaS software system runs,and establish the performance fault type set and determine performance log feature.We also perform performance fault type annotation for the performance log combined with the analysis result of the warning log.Moreover,we deal with the incomplete performance log and the type non-equalization problem by using the mean filling for the same type and combination of SMOTE(Synthetic Minority Oversampling Technique)and undersampling methods.Finally,we conduct an empirical study combined with the disaster reduction system deployed on the cloud platform,and it demonstrates that the proposed method has high efficiency and accuracy for the performance diagnosis when SaaS software system runs.
基金financial support from the National Natural Science Foundation of China (21706220)
文摘Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path.
基金This work was supported by the National Natural Science Foundation of China(No.50106005)
文摘Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.
基金National High Technology Research and Development Program of China(No.2007AA04Z171)
文摘Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.
基金The 11th Five-year National Defense Preliminary Research Projects (B0520060455)
文摘Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.
文摘A main weak point of back propagation (BP) algorithm is that the search procedure easily falls into the local minimum. In order to solve this problem, a GA ANN algorithm is proposed and applied to fault diagnosis of power transformers. Some examples s
文摘In this paper, a genetic algorithm based knowledge auto acquisition approach for fault diagnosis is proposed. Under the circumstances that diagnostic examples are available but no empirical knowledge can be obtained, knowledge for fault diagnosis can be
基金Supported bythe High Technology Research and Development Programme of Chinathe NationalNutural Science Foundation of Chinathe Youth Foundation of University of Science and Technology of China
文摘This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalytic and cracking unit. The practical running results show that more effective fault matrixes can be generated by GAFMLS, and the reliability and precision of FCC expert system are improved.
基金Supported by the National Natural Science Foundation of Chilla
文摘Based on the influence of circuit element tolerances to the k-fault diagnosis, a method of fault diagnosis is presented which is called minimum tolerance estimation algorithm and has clear physical meaning. Using this’method, an effective estimation of the equivalent fault sources can be obtained with less computing time. It is especially worthwhile to point out that an adaptive sub-optimum algorithm, which comes from the above method, requires even less computing-labor and is particularly suitable to more complicated circuits as well as real-time fault location.
基金the National Natural Science Foundation of China (Grant No. 61403040)
文摘Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China! (No.69973016).
文摘In this paper we propose an equation model of system-level fault diagnoses, and construct corresponding theory and algorithms. People can turn any PMC model on ex-test into an equivalent equation (or a system of equations), and find all consistent fault patterns based on the equation model. We can also find all fault patterns, in which the fault node numbers are less than or equal to t without supposing t-diagnosable. It is not impossible for all graphic models.
基金supported by the Fundamental Research Funds for the Central Universities(No.NS2016027)
文摘Twin support vector machine(TWSVM)is a new development of support vector machine(SVM)algorithm.It has the smaller computation scale and the stronger ability to cope with unbalanced problems.In this paper,TWSVM is introduced into aircraft engine gas path fault diagnosis.The generalization capacity of Gauss kernel function usually used in TWSVM is relatively weak.So a mixed kernel function is used to improve performance to ensure that the TWSVM algorithm can better balance a strong generalization ability and a good learning ability.Experimental results prove that the cross validation training accuracy of TWSVM using the mixed kernel function averagely increases 2%.Grid search is usually applied in parameter optimization of TWSVM,but it heavily depends on experience.Therefore,the hybrid particle swarm algorithm is introduced.It can intelligently and rapidly find the global optimum.Experiments prove that its training accuracy is better than that of the classical particle swarm algorithm by 5%.
基金Projects 04JK197T supported by Shaanxi Education Bureau Science Foundation and 2005E202 by Shaanxi Science Foundation
文摘In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.
基金Supported by the joint fund of National Natural Science Foundation of China and Civil Aviation Administration Foundation of China(No.U1233201)
文摘A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization.