期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate(CaCO_3)/poly(methyl methacrylate) core-shell nanoparticles 被引量:3
1
作者 Aniruddha Chatterjee Satyendra Mishra 《Particuology》 SCIE EI CAS CSCD 2013年第6期760-767,共8页
The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The p... The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The polymer chains were anchored onto the surface of nano-CaCO3 through use of a cou- pling agent, triethoxyvinyl silane (TEVS). Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n-pentanol were used as the initiator, surfactant and cosurfactant, respectively. The polymeriza- tion mechanism of the core-shell latex particles is discussed. The encapsulation of nano-CaCO3 by PMMA was confirmed using a transmission electron microscope (TEM). The grafting percentage of the core-shell particles was investigated by thermogravimetric analysis (TGA). The nano-CaCO3/PMMA core-shell par- ticles were characterized by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results revealed the existence of a strong interaction at the interface of the nano-CaCO3 particle and the PMMA, which implies that the polymer chains were successfully grafted onto the surface of the nano-CaCO3 particles through the link of the coupling agent, In addition, the TGA and DSC results indicated an enhancement of the thermal stability of the core-shell materials compared with that of the pure nano-PMMA, The nano-CaCO3/PMMA particles were blended into a polypropylene (PP) matrix by melt processing. It can also be observed using scanning electron microscopy (SEM) that the PMMA chains grafted onto the CaCO3 nanoparticles interfere with the aggregation of CaCO3 in the polymer matrix (PP matrix) and thus improve the compatibility of the CaCO3 nanoparticles with the PP matrix. 展开更多
关键词 Atomized microemulsion Core-shell nanoparticles Thermal properties Compatibility of core-shell nanoparticles with polymer matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部