期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Class of Simple,General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems
1
作者 Saray Busto Michael Dumbser 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1742-1778,共37页
In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall... In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability. 展开更多
关键词 Overdetermined thermodynamically compatible hyperbolic systems Hyperbolic and thermodynamically compatible(HTC)finite volume schemes Abgrall framework Discrete entropy inequality Nonlinear stability in the energy norm Applications to ideal magnetohydrodynamics(MHD) Godounov-Peshkov-Romenski(GPR)model of continuum mechanics Turbulent shallow water(TSW)flows
下载PDF
Numerical Solution of a One-Dimensional Nonlocal Helmholtz Equation by Perfectly Matched Layers
2
作者 Yu Du Jiwei Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第2期387-414,共28页
We consider the computation of a nonlocal Helmholtz equation by using perfectly matched layer(PML).We first derive the nonlocal PML equation by extending PML modifications from the local operator to the nonlocal opera... We consider the computation of a nonlocal Helmholtz equation by using perfectly matched layer(PML).We first derive the nonlocal PML equation by extending PML modifications from the local operator to the nonlocal operator of integral form.After that,we give stability estimates of some weighted-average values of the nonlocal Helmholtz solution and prove that(i)the weighted-average value of the nonlocal PML solution decays exponentially in PML layers in one case;(ii)in the other case,the weighted-average value of the nonlocal Helmholtz solution itself decays exponentially outside some domain.Particularly for a typical kernel functionγ_(1)(s)=1/2 e^(−|s|),we obtain the Green’s function of the nonlocal Helmholtz equation,and use the Green’s function to further prove that(i)the nonlocal PML solution decays exponentially in PML layers in one case;(ii)in the other case,the nonlocal Helmholtz solution itself decays exponentially outside some domain.Based on our theoretical analysis,the truncated nonlocal problems are discussed and an asymptotic compatibility scheme is also introduced to solve the resulting truncated problems.Finally,numerical examples are provided to verify the effectiveness and validation of our nonlocal PML strategy and theoretical findings. 展开更多
关键词 Nonlocal wave propagation Helmholtz equation perfectly matched layer asymptotic compatibility scheme Green’s function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部