The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), w...A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at h...A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.展开更多
In bandgap references,the effect caused by the input offset of the operational amplifier can be effectively reduced by the utilization of cascade bipolar junction transistors(BJTs).But in modern CMOS logic processes...In bandgap references,the effect caused by the input offset of the operational amplifier can be effectively reduced by the utilization of cascade bipolar junction transistors(BJTs).But in modern CMOS logic processes,due to the small value ofβ,the base-emitter path of BJTs has a significant streaming effect on the collector current,which leads to a large temperature drift for the reference voltage.To solve this problem,a base-emitter current compensating technique is proposed in a cascade BJT bandgap reference structure to calibrate the curvature of the output voltage to temperature.Experimental results based on the 0.13μm logic CMOS process show that the reference voltage is 1.238 V and the temperature coefficient is 6.2 ppm/℃within the range of-40 to 125℃.展开更多
Underwater docking greatly facilitates and extends operation of an autonomous underwater vehicle(AUV) without the support of a surface vessel. Robust and accurate control is critically important for docking an AUV int...Underwater docking greatly facilitates and extends operation of an autonomous underwater vehicle(AUV) without the support of a surface vessel. Robust and accurate control is critically important for docking an AUV into a small underwater funneltype dock station. In this paper, a docking system with an under-actuated AUV is presented, with special attention paid to control algorithm design and implementation. For an under-actuated AUV, the cross-track error can be controlled only via vehicle heading modulation, so both the cross-track error and heading error have to be constrained to achieve successful docking operations, while the control problem can be even more complicated in practical scenarios with the presence of unknown ocean currents. To cope with the above issues, a control scheme of a three-hierarchy structure of control loops is developed, which has been embedded with online current estimator/compensator and effective control parameter tuning. The current estimator can evaluate both horizontal and vertical current velocity components, based only on the measurement of AUV's velocity relative to the ground; in contrast, most existing methods use the measurements of both AUV's velocities respectively relative to the ground and the water column. In addition to numerical simulation, the proposed docking scheme is fully implemented in a prototype AUV using MOOS-IvP architecture. Simulation results show that the current estimator/compensator works well even in the presence of lateral current disturbance. Finally, a series of sea trials are conducted to validate the current estimator/compensator and the whole docking system. The sea trial results show that our control methods can drive the AUV into the dock station effectively and robustly.展开更多
Two essential blocks for the PLLs based on CP, a phase-frequency detector (PFD) and an improved current steering charge-pump (CP), are developed. The mechanisms for widening the phase error detection range and eli...Two essential blocks for the PLLs based on CP, a phase-frequency detector (PFD) and an improved current steering charge-pump (CP), are developed. The mechanisms for widening the phase error detection range and eliminating the dead zone are analyzed and applied in our design to optimize the proposed PFD. To obtain excellent current matching and minimum current variation over a wide output voltage range, an improved structure for the proposed CP is developed by fully utilizing many additional sub-circuits. Implemented in a standard 90-nm CMOS process, the proposed PFD achieves a phase error detection range from -354° to 354° and the improved CP demonstrates a current mismatch of less than 1.1% and a pump-current variation of 4% across the output voltage, swinging from 0.2 to 1.1 V, and the power consumption is 1.3 mW under a 1.2-V supply.展开更多
Active power filters (APFs) are widely used for their outstanding performance in current and voltage rip- ple compensation. As modern high-energy accelerators are demanding much more stringent current ripple guideli...Active power filters (APFs) are widely used for their outstanding performance in current and voltage rip- ple compensation. As modern high-energy accelerators are demanding much more stringent current ripple guidelines, APFs are used in the magnet power supply (MPS) in accelerator systems. However, conventional APFs have many drawbacks due to the traditional topology, such as complex structure, nonadjustable working voltage, requirement of power supply, and so on. This paper proposes a new APF topology, which works as two types of chopper circuits. This APF does not need extra electricity, but uses the power of the MPS current ripple to realize ripple depression. Experimental results prove its feasibility and effectiveness.展开更多
Compact transmitter and receiver optical sub-assemblies(TOSA and ROSA) are fabricated in our laboratory and have an aggregated capacity of 100 Gb/s. Specially, directly modulated laser(DML) drivers with two layers...Compact transmitter and receiver optical sub-assemblies(TOSA and ROSA) are fabricated in our laboratory and have an aggregated capacity of 100 Gb/s. Specially, directly modulated laser(DML) drivers with two layers of electrical circuit boards are designed to inject RF signals and bias currents separately. For all the lanes, the3 dB bandwidth of the cascade of the TOSA and ROSA exceeds 9 GHz, which allows the 12.5 Gb/s operation.With the 12.5 Gb/s × 8-lane operation, clear eye diagrams for back-to-back and 30-km amplified transmission with a dispersion compensation fiber are achieved. Low cost and simple processing technology make it possible to realize commercial production.展开更多
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.
基金Project supported by Shanghai Leading Academic DisciplineProject (Grant No .T0103) ,and Shanghai Post Doctoral Scienti-fic Research (Grant No .05R214122)
文摘A novel software implementation for current polarity detection and current compensation is presented. For a three-phase zero-voltage soft-switching (ZVS) PWM converter based on phase and amplitude control (PAC), when saw-tooth carriers with alternate positive and negative slopes are adopted, the positive or negative slopes are chosen according to the phase current polarity. Since polarity reversal causes current distortion, current at the instant of reversal should be compensated for. Based on the characteristic of unity power factor converter in rectification and regeneration modes, a software implementation for current polarity detection is proposed. Distortion of current zero-crossing caused by using saw-tooth carriers with alternate positive and negative slopes is analyzed, and the relevant compensation method is proposed. Experimental study with a 1.5 kW device shows that phase current has a small harmonic content and power factor is high both in rectification and regeneration modes.
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
基金This project is supported by European Community Project, National NaturalScience Foundation of China (No.50437010) and Aviation Science Founda-tion of China (No.99C52072).
文摘A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90-350 mV at 550 ℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2-3 V at 550 ℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550 ℃ in a magnetic bearing system for more than 100 h.
基金Project supported by the National New Century Excellent Talents in University,Program for Changjiang Scholars and Innovative Research Team in University
文摘In bandgap references,the effect caused by the input offset of the operational amplifier can be effectively reduced by the utilization of cascade bipolar junction transistors(BJTs).But in modern CMOS logic processes,due to the small value ofβ,the base-emitter path of BJTs has a significant streaming effect on the collector current,which leads to a large temperature drift for the reference voltage.To solve this problem,a base-emitter current compensating technique is proposed in a cascade BJT bandgap reference structure to calibrate the curvature of the output voltage to temperature.Experimental results based on the 0.13μm logic CMOS process show that the reference voltage is 1.238 V and the temperature coefficient is 6.2 ppm/℃within the range of-40 to 125℃.
基金Project supported by the Zhejiang Provincial Natural Science Foundation(No.LY16F010007)the National High-Tech R&D Program of China(No.2013AA09A414)the Fundamental Research Funds for the Central Universities,China(No.2017QNA5009)
文摘Underwater docking greatly facilitates and extends operation of an autonomous underwater vehicle(AUV) without the support of a surface vessel. Robust and accurate control is critically important for docking an AUV into a small underwater funneltype dock station. In this paper, a docking system with an under-actuated AUV is presented, with special attention paid to control algorithm design and implementation. For an under-actuated AUV, the cross-track error can be controlled only via vehicle heading modulation, so both the cross-track error and heading error have to be constrained to achieve successful docking operations, while the control problem can be even more complicated in practical scenarios with the presence of unknown ocean currents. To cope with the above issues, a control scheme of a three-hierarchy structure of control loops is developed, which has been embedded with online current estimator/compensator and effective control parameter tuning. The current estimator can evaluate both horizontal and vertical current velocity components, based only on the measurement of AUV's velocity relative to the ground; in contrast, most existing methods use the measurements of both AUV's velocities respectively relative to the ground and the water column. In addition to numerical simulation, the proposed docking scheme is fully implemented in a prototype AUV using MOOS-IvP architecture. Simulation results show that the current estimator/compensator works well even in the presence of lateral current disturbance. Finally, a series of sea trials are conducted to validate the current estimator/compensator and the whole docking system. The sea trial results show that our control methods can drive the AUV into the dock station effectively and robustly.
基金Project supported by the National Basic Research Program of China(No.2010CB327404)the National High Technology Research and Development Program(No.2011AA10305)the National Natural Science Foundation of China(No.60901012)
文摘Two essential blocks for the PLLs based on CP, a phase-frequency detector (PFD) and an improved current steering charge-pump (CP), are developed. The mechanisms for widening the phase error detection range and eliminating the dead zone are analyzed and applied in our design to optimize the proposed PFD. To obtain excellent current matching and minimum current variation over a wide output voltage range, an improved structure for the proposed CP is developed by fully utilizing many additional sub-circuits. Implemented in a standard 90-nm CMOS process, the proposed PFD achieves a phase error detection range from -354° to 354° and the improved CP demonstrates a current mismatch of less than 1.1% and a pump-current variation of 4% across the output voltage, swinging from 0.2 to 1.1 V, and the power consumption is 1.3 mW under a 1.2-V supply.
文摘Active power filters (APFs) are widely used for their outstanding performance in current and voltage rip- ple compensation. As modern high-energy accelerators are demanding much more stringent current ripple guidelines, APFs are used in the magnet power supply (MPS) in accelerator systems. However, conventional APFs have many drawbacks due to the traditional topology, such as complex structure, nonadjustable working voltage, requirement of power supply, and so on. This paper proposes a new APF topology, which works as two types of chopper circuits. This APF does not need extra electricity, but uses the power of the MPS current ripple to realize ripple depression. Experimental results prove its feasibility and effectiveness.
基金supported by the National High-Tech Research and Development Program of China(No.2013AA014201)the National Natural Science Foundation of China(Nos.61575186 and 61635001)
文摘Compact transmitter and receiver optical sub-assemblies(TOSA and ROSA) are fabricated in our laboratory and have an aggregated capacity of 100 Gb/s. Specially, directly modulated laser(DML) drivers with two layers of electrical circuit boards are designed to inject RF signals and bias currents separately. For all the lanes, the3 dB bandwidth of the cascade of the TOSA and ROSA exceeds 9 GHz, which allows the 12.5 Gb/s operation.With the 12.5 Gb/s × 8-lane operation, clear eye diagrams for back-to-back and 30-km amplified transmission with a dispersion compensation fiber are achieved. Low cost and simple processing technology make it possible to realize commercial production.