The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo ...The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo S_(2).However,the catalytic activity of Mo S_(2)mainly relies on edge sites,but is limited by inert basal planes.We herein report a novel,facile,ethylene glycol enabled competing reduction strategy to dope Mo S_(2)homogeneously with oxygen atoms so that its inert basal planes can be unlocked.Ethylene glycol works as a reducing agent and competes with thiourea to react with ammonium molybdate,leading to insufficient sulfuration of Mo,and consequent formation of O-Mo S_(2).Our theoretical and experimental investigations indicate that the homogeneously distributed O dopants can create abundant adsorption/-catalytic sites in the Mo S_(2)basal planes,enlarge the inter-plane distance to promote ion transport,and thus enhance the catalytic conversion of polysulfides.The oxygen doped Mo S_(2)(O-Mo S_(2))is supported on carbon nanosheets(CNS)and the composite(O-Mo S_(2)/CNS)is employed to modify the separator of Li-S battery.It gives the battery an initial discharge capacity of 1537 m Ah g-1at 0.2 C,and the battery retains a discharge capacity of 545 m Ah g-1after ultra-long 2000 cycles at 1 C,corresponding to a very small cyclic decay rate of 0.0237%.Even under a raising sulfur loading of 8.2 mg cm^(-2),the Li-S battery also delivers a high discharge capacity(554 m Ah g^(-1))with outstanding cycle stability(84.6%capacity retention)after 100 cycles at 0.5 C.Our work provides a novel,facile approach to fabricate highly catalytically active oxygen-doped Mo S_(2)for advanced Li-S batteries.展开更多
基金financial support from the fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)the Science and Technology Innovation Fund of Dalian(2018J12GX052)+3 种基金the National Natural Science Foundation of China(21776042,22108027)the Fundamental Research Funds for the Central Universities of China(DUT19ZD214)the Shenzhen Science and Technology Program(201908163000519)the GDSTC-Key R&D Project(GDSTC No.2019B090908001)。
文摘The parasitic polysulfides shuttle effect greatly hinders the practical application of lithium sulfur batteries,and this issue can be addressed by promoting polysulfides conversion with catalytic materials such as Mo S_(2).However,the catalytic activity of Mo S_(2)mainly relies on edge sites,but is limited by inert basal planes.We herein report a novel,facile,ethylene glycol enabled competing reduction strategy to dope Mo S_(2)homogeneously with oxygen atoms so that its inert basal planes can be unlocked.Ethylene glycol works as a reducing agent and competes with thiourea to react with ammonium molybdate,leading to insufficient sulfuration of Mo,and consequent formation of O-Mo S_(2).Our theoretical and experimental investigations indicate that the homogeneously distributed O dopants can create abundant adsorption/-catalytic sites in the Mo S_(2)basal planes,enlarge the inter-plane distance to promote ion transport,and thus enhance the catalytic conversion of polysulfides.The oxygen doped Mo S_(2)(O-Mo S_(2))is supported on carbon nanosheets(CNS)and the composite(O-Mo S_(2)/CNS)is employed to modify the separator of Li-S battery.It gives the battery an initial discharge capacity of 1537 m Ah g-1at 0.2 C,and the battery retains a discharge capacity of 545 m Ah g-1after ultra-long 2000 cycles at 1 C,corresponding to a very small cyclic decay rate of 0.0237%.Even under a raising sulfur loading of 8.2 mg cm^(-2),the Li-S battery also delivers a high discharge capacity(554 m Ah g^(-1))with outstanding cycle stability(84.6%capacity retention)after 100 cycles at 0.5 C.Our work provides a novel,facile approach to fabricate highly catalytically active oxygen-doped Mo S_(2)for advanced Li-S batteries.