期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Topic-Aware Abstractive Summarization Based on Heterogeneous Graph Attention Networks for Chinese Complaint Reports
1
作者 Yan Li Xiaoguang Zhang +4 位作者 Tianyu Gong Qi Dong Hailong Zhu Tianqiang Zhang Yanji Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3691-3705,共15页
Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.Ho... Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports. 展开更多
关键词 Text summarization TOPIC Chinese complaint report heterogeneous graph attention network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部