According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this p...According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.展开更多
According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In thi...According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.展开更多
The paper applies a one-to-one correspondence which exists between individual Schr?dinger perturbation terms and the diagrams obtained on a circular scale of time to whole sets of the Schr?dinger terms belonging to a ...The paper applies a one-to-one correspondence which exists between individual Schr?dinger perturbation terms and the diagrams obtained on a circular scale of time to whole sets of the Schr?dinger terms belonging to a definite perturbation order. In effect the diagram properties allowed us to derive the recurrence formulae giving the number of higher perturbative terms from the number of lower order terms. This recurrence formalism is based on a complementary property that any perturbation order N can be composed of two positive integer components Na , Nb combined into N in all possible ways. Another result concerns the degeneracy of the perturbative terms. This degeneracy is shown to be only twofold and the terms having it are easily detectable on the basis of a circular scale. An analysis of this type demonstrates that the degeneracy of the perturbative terms does not exist for very low perturbative orders. But when the perturbative order exceeds five, the number of degenerate terms predominates heavily over that of nondegenerate terms.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.
基金The project supported by the Foundation of Zhongshan University Advanced Research Center
文摘According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.
文摘The paper applies a one-to-one correspondence which exists between individual Schr?dinger perturbation terms and the diagrams obtained on a circular scale of time to whole sets of the Schr?dinger terms belonging to a definite perturbation order. In effect the diagram properties allowed us to derive the recurrence formulae giving the number of higher perturbative terms from the number of lower order terms. This recurrence formalism is based on a complementary property that any perturbation order N can be composed of two positive integer components Na , Nb combined into N in all possible ways. Another result concerns the degeneracy of the perturbative terms. This degeneracy is shown to be only twofold and the terms having it are easily detectable on the basis of a circular scale. An analysis of this type demonstrates that the degeneracy of the perturbative terms does not exist for very low perturbative orders. But when the perturbative order exceeds five, the number of degenerate terms predominates heavily over that of nondegenerate terms.