This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The...This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.展开更多
In this paper, a design of very compact microstrip bandstop filters based on complementary split ring resonators (CSRRs) is proposed. Two techniques of metamaterial miniaturization are used to optimize the physical an...In this paper, a design of very compact microstrip bandstop filters based on complementary split ring resonators (CSRRs) is proposed. Two techniques of metamaterial miniaturization are used to optimize the physical and electrical size of the CSRR. The bandstop filter is produced by an array of miniaturized loaded CSRRs etched on the center line of a microstrip. The size of the proposed filter, is as small as 0.58 cm2, and its electrical length is very small with only 0.08 λ0), compared to a conventional bandstop filter, a miniaturization of a factor 5 while the bandstop performance is maintained. A very good agreement obtained between the measurement and the simulation results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474097,11374099,and 11274116)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)China
文摘This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode(1500 nm)is far from the pump mode(980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 10^3 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10^-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle(n = 1.5, r = 1.25 nm) is trapped in the gap.
文摘In this paper, a design of very compact microstrip bandstop filters based on complementary split ring resonators (CSRRs) is proposed. Two techniques of metamaterial miniaturization are used to optimize the physical and electrical size of the CSRR. The bandstop filter is produced by an array of miniaturized loaded CSRRs etched on the center line of a microstrip. The size of the proposed filter, is as small as 0.58 cm2, and its electrical length is very small with only 0.08 λ0), compared to a conventional bandstop filter, a miniaturization of a factor 5 while the bandstop performance is maintained. A very good agreement obtained between the measurement and the simulation results.
文摘针对移相器和功分器的功能融合设计,提出了一种基于慢波基片集成波导(Slow-Wave Substrate Integrated Waveguide,SW-SIW)的小型化移相功分器,两个输出分支等长带宽,可实现30°相移量.其中一个输出分支通过基片集成波导(Substrate Integrated Waveguide,SIW)实现,而另一个输出分支将互补开口谐振环(Complementary SplitRing Resonator,CSRR)加载在上层金属表面,代替传统SIW连续的金属表面,该CSRR由经典CSRR结构演变而来,同时为了降低由CSRR加载所造成的相位上的不稳定,在CSRR内部添加金属化通孔,实现SW-SIW,使得截止频率和相速度降低.测试结果表明,移相功分器在9.0~11.8 GHz频带范围内反射系数|S11|小于-10 d B,相对工作带宽为26.9%,插入损耗小于1.3 d B.两个输出端口的相位差稳定在30°±3°,幅度差小于1.4 d B,实现了等功率分配.所设计的移相功分器具有较小的尺寸和低制造成本,适合应用在相控阵天线中.