期刊文献+
共找到3,182篇文章
< 1 2 160 >
每页显示 20 50 100
Behavior of exciton in direct−indirect band gap Al_(x)Ga_(1−x)As crystal lattice quantum wells
1
作者 Yong Sun Wei Zhang +10 位作者 Shuang Han Ran An Xin-Sheng Tang Xin-Lei Yu Xiu-Juan Miao Xin-Jun Ma Xianglian Pei-Fang Li Cui-Lan Zhao Zhao-Hua Ding Jing-Lin Xiao 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期64-70,共7页
Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is a... Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency. 展开更多
关键词 exciton effects aluminum gallium arsenide crystal direct band gap semiconductor indirect band gap semiconductor
下载PDF
Machine learning of theΓ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
2
作者 马宵怡 罗宇峰 +4 位作者 李梦可 焦文艳 袁红梅 刘惠军 方颖 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期32-36,共5页
The novel electronic properties of bilayer graphene can be fine-tuned via twisting,which may induce flat bands around the Fermi level with nontrivial topology.In general,the band structure of such twisted bilayer grap... The novel electronic properties of bilayer graphene can be fine-tuned via twisting,which may induce flat bands around the Fermi level with nontrivial topology.In general,the band structure of such twisted bilayer graphene(TBG)can be theoretically obtained by using first-principles calculations,tight-binding method,or continuum model,which are either computationally demanding or parameters dependent.In this work,by using the sure independence screening sparsifying operator method,we propose a physically interpretable three-dimensional(3D)descriptor which can be utilized to readily obtain theΓ-point gap of TBG at arbitrary twist angles and different interlayer spacings.The strong predictive power of the descriptor is demonstrated by a high Pearson coefficient of 99%for both the training and testing data.To go further,we adopt the neural network algorithm to accurately probe the flat bands of TBG at various twist angles,which can accelerate the study of strong correlation physics associated with such a fundamental characteristic,especially for those systems with a larger number of atoms in the unit cell. 展开更多
关键词 twisted bilayer graphene band gap flat bands machine learning
下载PDF
Laser-assisted Simulation of Dose Rate Effects of Wide Band Gap Semiconductor Devices
3
作者 TANG Ge XIAO Yao +3 位作者 SUN Peng LIU Jingrui ZHANG Fuwang LI Mo 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第12期2314-2325,共12页
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety... Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices. 展开更多
关键词 laser-assisted simulation dose rate effect wide band gap semiconductor conversion factor
下载PDF
Influence of Cu doping in Magnesium Hydroxide Nanoparticles for Bandgap Engineering
4
作者 SYED Masood Raza S NASEEM Shah +1 位作者 ADEEL Tahir YASMEEN Bibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期485-489,共5页
Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples ac... Cu doped Mg(OH)_(2) nanoparticles were synthesized with varying concentrations from 0 to 10%by a chemical synthesis technique of coprecipitation.X-rays diffraction (XRD) of the samples confirms that all the samples acquire the hexagonal crystal structure.XRD results indicated the solubility limit of dopant in the host material and the secondary phase of CuO was observed beyond 3%Cu doping in Mg(OH)_(2).The reduction in the size of nanoparticles was observed from 166 to 103 nm for Mg(OH)_(2) and 10% Cu doped Mg(OH)_(2)samples,respectively.The shift in absorption spectra exhibited the systematical enhancement in optical bandgap from 5.25 to 6.085 eV.A good correlation was observed between the bandgap energy and crystallite size of the nanocrystals which confirmed the size induced effect in the nanoparticles.The transformation in the sample morphology was observed from irregular spherical particles to sepals like shapes with increasing the Cu concentration in the host material.The energy dispersive X-Ray (EDX) analysis confirmed the purity of mass percentage composition of the elements present in the samples. 展开更多
关键词 Cu doped Mg(OH)_(2) NANOPARTICLES phase purity optical band gap MORPHOLOGIES
下载PDF
Influence of Defect Density, Band Gap Discontinuity and Electron Mobility on the Performance of Perovskite Solar Cells
5
作者 Issiaka Sankara Soumaïla Ouédraogo +4 位作者 Daouda Oubda Boureima Traoré Marcel Bawindsom Kébré Adama Zongo François Zougmoré 《Advances in Materials Physics and Chemistry》 2023年第8期151-160,共10页
In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the... In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance. 展开更多
关键词 Defect Density Electron Mobility band gap PEROVSKITE SCAPS-1D Software
下载PDF
Analysis of Light Load Efficiency Characteristics of a Dual Active Bridge Converter Using Wide Band-Gap Devices
6
作者 Bongwoo Kwak 《Energy and Power Engineering》 2023年第10期340-352,共13页
In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out... In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency. 展开更多
关键词 Dual Active Bridge (DAB) Converter Zero Voltage Switching (ZVS) ZVS Region Wide band-gap Power Semiconductor Parasitic Output Capacitance
下载PDF
Band gap anomaly and topological properties in lead chalcogenides
7
作者 聂思敏 许霄琰 +1 位作者 徐刚 方忠 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期27-34,共8页
Band gap anomaly is a well-known issue in lead chalcogenides PbX (X = S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the b... Band gap anomaly is a well-known issue in lead chalcogenides PbX (X = S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the band gap anomaly in PbTe is mainly related to the high on-site energy of Te 5s orbital and the large s-p hopping originated from the irregular extended distribution of Te 5s electrons. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with band inversion at L point, which clearly indicates that PbPo is a topological crystalline insulator (TCI). The calculated mirror Chern number and surface states double confirm this conclusion. 展开更多
关键词 band gap anomaly lead chalcogenides indirect band gap semiconductor topological crystallineinsulator
下载PDF
Ab-initio calculations of bandgap tuning of In1-xGaxY(Y=N,P)alloys for optoelectronic applications
8
作者 Muhammad Rashid Jamil M +3 位作者 Mahmood Q Shahid M Ramay Asif Mahmood A Ghaithan H M 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期467-474,共8页
The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades.In the present article,the bandgap tuning and its influen... The III–V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades.In the present article,the bandgap tuning and its influence on optical properties of In1-xGaxN/P,where(x=0.0,0.25,0.50,0.75,and 1.0)alloys are comprehensively analyzed by density functional theory based on full-potential linearized augmented plane wave method(FP-LAPW)and modified Becke and Johnson potentials(TB-mBJ).The direct bandgaps turn from 0.7 eV to 3.44 eV,and 1.41 eV to 2.32 eV for In1-xGaxN/P alloys,which increases their potentials for optoelectronic devices.The optical properties are discussed such as dielectric constants,refraction,absorption,optical conductivity,and reflection.The light is polarized in the low energy region with minimum reflection.The absorption and optical conduction are maxima in the visible region,and they are shifted into the ultraviolet region by Ga doping.Moreover,static dielectric constant e1(0)is in line with the bandgap from Penn’s model. 展开更多
关键词 density functional theory direct bandgap III-V semiconductors tuning of optical band gap solar cell applications
下载PDF
Band gap calculation and photo catalytic activity of rare earths doped rutile TiO_2 被引量:12
9
作者 边亮 宋绵新 +2 位作者 周天亮 赵效勇 戴清清 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期461-468,共8页
The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important... The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important factors for altering their absorbing wavelengths. The results show that RE ions could obviously reduce the band gap widths and form of energy of ruffle TiO2 except Lu, Y, Yb and Sc, and the order of absorbing wavelengths of RE doped ruffle TiO2 were the same as that of the results of calculation. The ratio of RE dopant was another important factor for the photo catalytic 'activity of RE doped rutile TiO2, and there was an optimal ratio of dopant. There was a constant for predigesting the calculation difficulty, respectively, which were 0.5mol.% and 100 mol^-1 under supposition. The band gap widths of RE doped rutile TiOz by DFT calculation were much larger than that by experiment. Finally, by transferring the calculation values to experiment values, it could be found and predicted that RE enlarged obviously the absorbing wavelengh of ruffle TiO2. In addition, the degree of RE ions edging out the Ti atom using the parameters of RE dements was computed. 展开更多
关键词 density functional theory ruffle TiO2 band gap rare earths
下载PDF
Development of ultra-narrow gap welding with constrained arc by flux band 被引量:26
10
作者 朱亮 郑韶先 陈剑虹 《China Welding》 EI CAS 2006年第2期44-49,共6页
Narrow gap welding has merits of lower residual stress and distortion, and superior mechanical properties of joints. A major problem of this process is the lack of fusion in sidewalls, hence many methods of weaving ar... Narrow gap welding has merits of lower residual stress and distortion, and superior mechanical properties of joints. A major problem of this process is the lack of fusion in sidewalls, hence many methods of weaving arc have been developed to increase heating effect of arc to the sidewalls. In this work, a new approach Without weaving arc is attempted to ensure the penetration of sidewall, and ultra-narrow gap welding with the gap of less than 5 mm was executed successfully. In this approach, the width of gap is decreased further, so that the sidewalls are made within range of arc heating to obtain the enough heat. In order to prevent the arc from being attracted by sidewall and going up along the sidewalls, two pieces of flux bands consisting of the specified aggregates are adhered to the sidewalls to constrain the arc. In addition, when flux band being heated by the arc, slag and gases are formed to shield the arc and the weld pool. This technique was tested on the welding experiment of pipeline steel with thickness of 20 mm. The involved welding parameters were obtained, that is, the width of gap is 4 mm, the welding current 250 A, and the heat input 0. 5 kJ/mm, the width of heat-affected zone is 1 -2 mm. 展开更多
关键词 ultra-narrow gap welding metal are welding flux band
下载PDF
Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures 被引量:9
11
作者 高喜 杨梓强 +4 位作者 亓丽梅 兰峰 史宗君 李大治 梁正 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2452-2458,共7页
This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In th... This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity. 展开更多
关键词 Cherenkov source slow wave structure photonic band gap three-dimensional particlein-cell
下载PDF
Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures 被引量:6
12
作者 郁殿龙 王刚 +2 位作者 刘耀宗 温激鸿 邱静 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期266-271,共6页
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically ... The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals. 展开更多
关键词 phononic crystals flexural vibration band gaps locally resonant
下载PDF
Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice 被引量:8
13
作者 Yize Wang Fengming Li +2 位作者 Yuesheng Wang Kikuo Kishimoto Wenhu Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第1期65-71,共7页
In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation... In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions. 展开更多
关键词 PIEZOELECTRICITY Phononic crystal Rectangular lattice - Plane-wave expansion method band gap
下载PDF
Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals 被引量:4
14
作者 王刚 刘耀宗 +1 位作者 温激鸿 郁殿龙 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期407-411,共5页
The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffa... The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case. 展开更多
关键词 phononic crystals locally resonant band gap mechanism
下载PDF
INFLUENCES OF ANISOTROPY ON BAND GAPS OF 2D PHONONIC CRYSTAL 被引量:4
15
作者 Zhengqiang Zhan Peijun Wei 1(Department of Mathematics and Mechanics,School of Applied Science,University of Science and Technology Beijing,Beijing 100083,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第2期181-188,共8页
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, ar... Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results. 展开更多
关键词 phononic crystal ORTHOTROPY band gap PERIODICITY plane wave expansion
下载PDF
Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos 被引量:3
16
作者 陈圣兵 温激鸿 +1 位作者 王刚 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期262-266,共5页
Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. ... Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches. 展开更多
关键词 piezoelectric shunting METAMATERIAL phononic band gaps
下载PDF
A Study of Properties of the Photonic Band Gap of Unmagnetized Plasma Photonic Crystal 被引量:5
17
作者 刘崧 钟双英 刘三秋 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第1期14-17,共4页
In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric ... In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices. 展开更多
关键词 plasma photonic crystal finite-difference time-domain method photonic band gap reflection and transmission coefficients
下载PDF
Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study 被引量:2
18
作者 Xuefen Cai Peng Zhang Su-Huai Wei 《Journal of Semiconductors》 EI CAS CSCD 2019年第9期55-60,共6页
From the recent experimentally observed conduction band offset and previously reported band gaps,one may deduce that the valence band offset between rutile SnO2 and TiO2 is around 1 eV,with TiO2 having a higher valenc... From the recent experimentally observed conduction band offset and previously reported band gaps,one may deduce that the valence band offset between rutile SnO2 and TiO2 is around 1 eV,with TiO2 having a higher valence band maximum.This implication sharply contradicts the fact that the two compounds have the same rutile structure and the Γ3^+ VBM state is mostly an oxygen p state with a small amount of cation d character,thus one would expect that SnO2 and TiO2 should have small valence band offset.If the valence band offset between SnO2 and TiO2 is indeed small,one may question the correctness of the previously reported band gaps of SnO2 and TiO2.In this paper,using first-principles calculations with different levels of computational methods and functionals within the density functional theory,we reinvestigate the long-standing band gap problem for SnO2.Our analysis suggests that the fundamental band gap of SnO2 should be similar to that of TiO2,i.e.,around 3.0 eV.This value is significantly smaller than the previously reported value of about 3.6 eV,which can be attributed as the optical band gap of this material.Similar to what has been found in In2O3,the discrepancy between the fundamental and optical gaps of SnO2 can be ascribed to the inversion symmetry of its crystal structure and the resultant dipole-forbidden transitions between its band edges.Our results are consistent with most of the optical and electrical measurements of the band gaps and band offset between SnO2 and TiO2,thus provide new understanding of the band structure and optical properties of SnO2.Experimental tests of our predictions are called for. 展开更多
关键词 SNO2 TiO2 band gap band OFFSET dipole-forbidden transition
下载PDF
Syntheses,Structures and Band Gaps of KLnSiS_4(Ln=Sm,Yb) 被引量:3
19
作者 郭胜平 曾卉一 +3 位作者 郭国聪 邹建平 徐刚 黄锦顺 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第12期1543-1548,共6页
Two new quaternary sulfides, KSmSiS4 (1) and KYbSiS4 (2), have been synthesized by high-temperature solid-state reaction. Single,crystal X-ray diffraction analyses indicate that both compounds crystallize in the s... Two new quaternary sulfides, KSmSiS4 (1) and KYbSiS4 (2), have been synthesized by high-temperature solid-state reaction. Single,crystal X-ray diffraction analyses indicate that both compounds crystallize in the space group P21/m, and the crystal data are as follows: a = 6.426(11), b = 6.582(11), c = 8.602(15)A, β= 107.90(13)°, Z = 2, V= 346.2(10) A^3, Dc = 3.317 g/cm^3, F(000) = 318,μ(MoKα) = 10.334 mm^-1, the final R = 0.0559 and wR = 0.1370 for 1; and α= 6.3244(10), b = 6.5552(10), c = 8.5701(15)A, β= 108.001(13)°, Z = 2, V = 337.91(9) A^3, De= 3.621 g/cm^3, F(000) = 334, μ(MoKα) = 15.737 mm^-1, the final R = 0.0422 and wR = 0.0960 for 2. The KLnSiS4 (Ln = Sm, Yb) structure consists of corrugated ∞^2 [LnSiS4]^- layers which are formed by edge-sharing LnS8 bicapped trigonal prisms and SiS4 tetrahedra. The K^+ cations are located in the cavities defined by S2 anions between the ∞^2[LnSiS4]^- layers. Band-gap analyses show that compounds 1 and 2 are semiconductors with optical band-gaps of 2.40 and 2.34 eV, respectively. 展开更多
关键词 CHALCOGENIDE RARE-EARTH solid-state reaction crystal structure band gap
下载PDF
Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure 被引量:3
20
作者 范春珍 王俊俏 +2 位作者 何金娜 丁佩 梁二军 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期242-246,共5页
We theoretically investigate the photonic band gap in one-dimensional photonic crystals with a graded multilayer structure. The proposed structure constitutes an alternating composite layer (metallic nanoparticles em... We theoretically investigate the photonic band gap in one-dimensional photonic crystals with a graded multilayer structure. The proposed structure constitutes an alternating composite layer (metallic nanoparticles embedded in TiO2 film) and an air layer. Regarding the multilayer as a series of capacitance, effective optical properties are derived. The dispersion relation is obtained with the solution of the transfer matrix equation. With a graded structure in the composite layer, numerical results show that the position and width of the photonic band gap can be effectively modulated by varying the number of the graded composite layers, the volume fraction of nanoparticles and the external stimuli. 展开更多
关键词 graded photonic crystals MULTILAYER band gap
下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部