Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the com...Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the complete-form vertical vorticity tendency equation.The results show that the heating rate of convectional condensation LHR can reach up to about 40 times that of stable condensation LHR.Both the stable and convectional heating centers are higher than 700 hPa,which would cause∂Q/∂z>0 and a positive vorticity source in the lower troposphere.The vertical gradient of stable condensation LHR contributes little to the growth of relative vorticity,while the relative vorticity tendency associated with the vertical gradient of convectional condensation LHR can be an order of magnitude higher than the former.The positive vorticity source is always located right below the latent heating center,and its maximum value can always be found in the lower troposphere.Convectional LHR is the primary factor for cyclone development from the perspective of diabatic heating.The horizontal gradient of total condensation LHR can contribute about 65%of the actual vorticity growth,but the effect of the vertical gradient of convectional condensation(LHR)can reach twice as much.The adiabatic heating from LHR can cause vorticity tendency directly.However,it can also change the vertical and horizontal gradient of potential temperature,which can further induce vorticity tendency.展开更多
Based on the daily maximum air temperature(T_(max))data from the China Meteorological Data Network and the NCEP/DOE reanalysis data,the intra-seasonal circulation and evolution of an extreme high temperature event(EHT...Based on the daily maximum air temperature(T_(max))data from the China Meteorological Data Network and the NCEP/DOE reanalysis data,the intra-seasonal circulation and evolution of an extreme high temperature event(EHTE)in the middle reaches of the Yangtze River(MYR)from August 9-21,2011 were explored,as well as the influence of diabatic heating on the position variation of the Western Pacific subtropical high(WPSH).Results show that the daily T_(max) in the MYR exhibits a vigorous intraseasonal oscillation(ISO)of 10-25 days in the extended summer of 1980-2018.The main factors affecting the EHTE in the summer of 2011 are the low-frequency wave train propagating southeastward in the mid-latitude of the upper troposphere and the low-frequency anticyclone moving northwestward in the lowlatitude of the mid-lower troposphere.The diagnosis of 925hPa thermodynamic equation indicates that the ISO features of the T_(max) in the core region is determined by the intra-seasonal variation of the adiabatic variation.In addition,the variations of the WPSH correspond well to the distribution of apparent heat source.In the early stage of the high temperature process,the apparent heat source in the north of the Bay of Bengal is a certain indicator for the westward extension of the WPSH.展开更多
By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during ...By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during persistent and intense rains in the Yangtze-Huaihe Rivers basin are studied. The results show that the position variation of WPSH is closely associated with the diabatic heating. There are strong apparent heating sources and moisture sinks in both the basin (to the north of WPSH) and the north of Bay of Bengal (to the west of WPSH) during persistent and intense rain events. In the basin, Q 1z begins to increase 3 days ahead of intense rainfall, maximizes 2 days later and then reduces gradually, but it changes little after precipitation ends, thus preventing the WPSH from moving northward. In the north of Bay of Bengal, 2 days ahead of strong rainfall over the basin, Q 1z starts to increase and peaks 1 day after the rain occurs, leading to the westward extension of WPSH. Afterwards, Q 1z begins declining and the WPSH makes its eastward retreat accordingly. Based on the complete vertical vorticity equation, in mid-troposphere, the vertical variation of heating in the basin is favorable to the increase of cyclonic vorticity north of WPSH, which counteracts the northward movement of WPSH and favors the persistence of rainbands over the basin. The vertical variation of heating in the north of Bay of Bengal is in favor of the increase of anti-cyclonic vorticity to the west of WPSH, which induces the westward extension of WPSH.展开更多
The complete form of the vertical vorticity tendency equation (the complete-form vorticity equation) is derived from the Ertel potential vorticity equation to contain thermodynamic factors. In this study, a new comp...The complete form of the vertical vorticity tendency equation (the complete-form vorticity equation) is derived from the Ertel potential vorticity equation to contain thermodynamic factors. In this study, a new complete-form vorticity equation, which has the same form as the original complete-form vorticity equation, is deduced from the absolute vorticity vector equation combined with the continuity equation and the expression of three-dimensional (3D) entropy gradient. By comparing the complete-form vorticity equation with the classical vertical vorticity equation, it is found that regardless of whether or not the isentropic surface is tilting, the two vorticity equations are in essence the same. The "baroclinic term" of the complete-form vorticity equation is exactly equal to the solenoidal term of the classical one, and there is a significant amount of cancellation between the two baroclinic items (the "slantwise term" and the horizontal vorticity change term) in the complete-form vorticity equation. In operational weather analysis, the tilt of the isentropic surface can be diagnosed according to the density of the isotherm on the upper-level isobaric map. For synoptic-scale motion, the vertical vorticity produced by the tilt of the isentropic surface is due to the contribution of atmospheric baroclinicity, which is measured by the solenoid. The 3D solenoid is parallel to the isentropic surface, so the more tilted the isentropic surface, the bigger the projection of the 3D solenoid in the vertical direction. The baroclinic contribution can be interpreted based on the PV thinking theory, but the relationship between the vorticity field and the potential vorticity field is not immediate.展开更多
本文利用NCAR开发的CAM5.1(Community Atmosphere Model Version 5.1)模式,针对我国东部大规模城市下垫面发展对南海夏季风爆发的影响进行了数值模拟研究。结果表明我国东部大规模城市群发展可能使得南海夏季风提前1候爆发;机理分析表明...本文利用NCAR开发的CAM5.1(Community Atmosphere Model Version 5.1)模式,针对我国东部大规模城市下垫面发展对南海夏季风爆发的影响进行了数值模拟研究。结果表明我国东部大规模城市群发展可能使得南海夏季风提前1候爆发;机理分析表明:在南海夏季风爆发之前,中国东部城市群发展引起的陆面增温,使得南海及其附近地区南北温差提前逆转、中国东部区域海平面气压降低,导致中南半岛到南海地区西南气流加强,中南半岛到南海地区降水增加,而凝结潜热垂直变化强迫出的异常环流,促进了南亚高压的加强及提前北跳,相伴随的高层抽吸作用有助于季风对流的建立和西太平洋副高的减弱东撤,从而形成了有利于南海夏季风爆发的高低层环流条件,导致南海夏季风提前爆发。另外,观测结果表明1993年之后南海夏季风爆发的日期相对上一个年代明显提前约2候,城市化快速发展阶段与南海夏季风爆发的年代际变化存在时间段的吻合,表明城市下垫面发展可能是南海夏季风提前爆发的原因之一。展开更多
Based on the daily NCEP/NCAR reanalysis data,the position variation of the western Pacific subtropical high(WPSH) in June 2005 and its relation to the diabatic heating in the subtropical East Asia are analyzed using...Based on the daily NCEP/NCAR reanalysis data,the position variation of the western Pacific subtropical high(WPSH) in June 2005 and its relation to the diabatic heating in the subtropical East Asia are analyzed using the complete vertical vorticity equation.The results show that the position variation of the WPSH is indeed associated with the diabatic heating in the subtropical East Asian areas.In comparison with June climatology,stronger heating on the north side of the WPSH and relatively weak ITCZ(intertropical convergence zone) convection on the south side of the WPSH occurred in June 2005.Along with the northward movement of the WPSH,the convective latent heating extended northward from the south side of the WPSH.The heating to the west of the WPSH was generally greater than that inside the WPSH,and each significant enhancement of the heating field corresponded to a subsequent westward extension of the WPSH.In the mid troposphere,the vertical variation of heating on the north of the WPSH was greater than the climatology,which is unfavorable for the northward movement of the WPSH.On the other hand,the vertical variation of heating south of the WPSH was largely smaller than the climatology,which is favorable for the anomalous increase of anticyclonic vorticity,leading to the southward retreat of the WPSH.Before the westward extension of the WPSH in late June 2005,the vertical variation of heating rates to(in) the west(east) of the WPSH was largely higher(lower) than the climatology,which is in favor of the increase of anticyclonic(cyclonic) vorticity to(in) the west(east) of the WPSH,inducing the subsequent westward extension of the WPSH.Similar features appeared in the lower troposphere.In a word,the heating on the north-south,east-west of the WPSH worked together,resulting in the WPSH extending more southward and westward in June 2005,which is favorable to the maintenance of the rainbelt in South China.展开更多
基金This study was supported by the Natural Science Foundation of Jiangsu Province[grant number BK20161603]the National Natural Science Foundation of China[grant numbers 41575010 and 41575070]the China Meteorological Administration[grant number CMAYBY2018-028].
文摘Taking an extratropical cyclone that produced extreme precipitation as the research object,this paper calculates the contribution of condensation latent heat release(LHR)to relative vorticity tendency based on the complete-form vertical vorticity tendency equation.The results show that the heating rate of convectional condensation LHR can reach up to about 40 times that of stable condensation LHR.Both the stable and convectional heating centers are higher than 700 hPa,which would cause∂Q/∂z>0 and a positive vorticity source in the lower troposphere.The vertical gradient of stable condensation LHR contributes little to the growth of relative vorticity,while the relative vorticity tendency associated with the vertical gradient of convectional condensation LHR can be an order of magnitude higher than the former.The positive vorticity source is always located right below the latent heating center,and its maximum value can always be found in the lower troposphere.Convectional LHR is the primary factor for cyclone development from the perspective of diabatic heating.The horizontal gradient of total condensation LHR can contribute about 65%of the actual vorticity growth,but the effect of the vertical gradient of convectional condensation(LHR)can reach twice as much.The adiabatic heating from LHR can cause vorticity tendency directly.However,it can also change the vertical and horizontal gradient of potential temperature,which can further induce vorticity tendency.
基金National Key Research and Development Program of China(2018YFC1505804)National Natural Science Foundation of China(42075032)。
文摘Based on the daily maximum air temperature(T_(max))data from the China Meteorological Data Network and the NCEP/DOE reanalysis data,the intra-seasonal circulation and evolution of an extreme high temperature event(EHTE)in the middle reaches of the Yangtze River(MYR)from August 9-21,2011 were explored,as well as the influence of diabatic heating on the position variation of the Western Pacific subtropical high(WPSH).Results show that the daily T_(max) in the MYR exhibits a vigorous intraseasonal oscillation(ISO)of 10-25 days in the extended summer of 1980-2018.The main factors affecting the EHTE in the summer of 2011 are the low-frequency wave train propagating southeastward in the mid-latitude of the upper troposphere and the low-frequency anticyclone moving northwestward in the lowlatitude of the mid-lower troposphere.The diagnosis of 925hPa thermodynamic equation indicates that the ISO features of the T_(max) in the core region is determined by the intra-seasonal variation of the adiabatic variation.In addition,the variations of the WPSH correspond well to the distribution of apparent heat source.In the early stage of the high temperature process,the apparent heat source in the north of the Bay of Bengal is a certain indicator for the westward extension of the WPSH.
基金Chinese National Key Technology R&D Program (2009BAC51B01)National Basic Research Program "973" of China (2012CB417403)+1 种基金Meteorological Science Foundation of Jiangsu Province (KM201207)‘333’Project of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘By using NCEP/NCAR daily reanalysis data and daily precipitation data of 740 stations in China, relationships between the position variation of the West Pacific subtropical high (WPSH) and the diabatic heating during persistent and intense rains in the Yangtze-Huaihe Rivers basin are studied. The results show that the position variation of WPSH is closely associated with the diabatic heating. There are strong apparent heating sources and moisture sinks in both the basin (to the north of WPSH) and the north of Bay of Bengal (to the west of WPSH) during persistent and intense rain events. In the basin, Q 1z begins to increase 3 days ahead of intense rainfall, maximizes 2 days later and then reduces gradually, but it changes little after precipitation ends, thus preventing the WPSH from moving northward. In the north of Bay of Bengal, 2 days ahead of strong rainfall over the basin, Q 1z starts to increase and peaks 1 day after the rain occurs, leading to the westward extension of WPSH. Afterwards, Q 1z begins declining and the WPSH makes its eastward retreat accordingly. Based on the complete vertical vorticity equation, in mid-troposphere, the vertical variation of heating in the basin is favorable to the increase of cyclonic vorticity north of WPSH, which counteracts the northward movement of WPSH and favors the persistence of rainbands over the basin. The vertical variation of heating in the north of Bay of Bengal is in favor of the increase of anti-cyclonic vorticity to the west of WPSH, which induces the westward extension of WPSH.
基金Supported by the National Natural Science Foundation of China(41475042 and 41175043)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406002)
文摘The complete form of the vertical vorticity tendency equation (the complete-form vorticity equation) is derived from the Ertel potential vorticity equation to contain thermodynamic factors. In this study, a new complete-form vorticity equation, which has the same form as the original complete-form vorticity equation, is deduced from the absolute vorticity vector equation combined with the continuity equation and the expression of three-dimensional (3D) entropy gradient. By comparing the complete-form vorticity equation with the classical vertical vorticity equation, it is found that regardless of whether or not the isentropic surface is tilting, the two vorticity equations are in essence the same. The "baroclinic term" of the complete-form vorticity equation is exactly equal to the solenoidal term of the classical one, and there is a significant amount of cancellation between the two baroclinic items (the "slantwise term" and the horizontal vorticity change term) in the complete-form vorticity equation. In operational weather analysis, the tilt of the isentropic surface can be diagnosed according to the density of the isotherm on the upper-level isobaric map. For synoptic-scale motion, the vertical vorticity produced by the tilt of the isentropic surface is due to the contribution of atmospheric baroclinicity, which is measured by the solenoid. The 3D solenoid is parallel to the isentropic surface, so the more tilted the isentropic surface, the bigger the projection of the 3D solenoid in the vertical direction. The baroclinic contribution can be interpreted based on the PV thinking theory, but the relationship between the vorticity field and the potential vorticity field is not immediate.
文摘本文利用NCAR开发的CAM5.1(Community Atmosphere Model Version 5.1)模式,针对我国东部大规模城市下垫面发展对南海夏季风爆发的影响进行了数值模拟研究。结果表明我国东部大规模城市群发展可能使得南海夏季风提前1候爆发;机理分析表明:在南海夏季风爆发之前,中国东部城市群发展引起的陆面增温,使得南海及其附近地区南北温差提前逆转、中国东部区域海平面气压降低,导致中南半岛到南海地区西南气流加强,中南半岛到南海地区降水增加,而凝结潜热垂直变化强迫出的异常环流,促进了南亚高压的加强及提前北跳,相伴随的高层抽吸作用有助于季风对流的建立和西太平洋副高的减弱东撤,从而形成了有利于南海夏季风爆发的高低层环流条件,导致南海夏季风提前爆发。另外,观测结果表明1993年之后南海夏季风爆发的日期相对上一个年代明显提前约2候,城市化快速发展阶段与南海夏季风爆发的年代际变化存在时间段的吻合,表明城市下垫面发展可能是南海夏季风提前爆发的原因之一。
基金Supported by the National Natural Science Foundation of China (40975057)National Key Technology R&D Program(2007BAC29B02 and 2009BAC51B01)+1 种基金Ph.D. Program Fund of the Ministry of Education of China (20093228120001)Qing Lan Project of Jiangsu Province
文摘Based on the daily NCEP/NCAR reanalysis data,the position variation of the western Pacific subtropical high(WPSH) in June 2005 and its relation to the diabatic heating in the subtropical East Asia are analyzed using the complete vertical vorticity equation.The results show that the position variation of the WPSH is indeed associated with the diabatic heating in the subtropical East Asian areas.In comparison with June climatology,stronger heating on the north side of the WPSH and relatively weak ITCZ(intertropical convergence zone) convection on the south side of the WPSH occurred in June 2005.Along with the northward movement of the WPSH,the convective latent heating extended northward from the south side of the WPSH.The heating to the west of the WPSH was generally greater than that inside the WPSH,and each significant enhancement of the heating field corresponded to a subsequent westward extension of the WPSH.In the mid troposphere,the vertical variation of heating on the north of the WPSH was greater than the climatology,which is unfavorable for the northward movement of the WPSH.On the other hand,the vertical variation of heating south of the WPSH was largely smaller than the climatology,which is favorable for the anomalous increase of anticyclonic vorticity,leading to the southward retreat of the WPSH.Before the westward extension of the WPSH in late June 2005,the vertical variation of heating rates to(in) the west(east) of the WPSH was largely higher(lower) than the climatology,which is in favor of the increase of anticyclonic(cyclonic) vorticity to(in) the west(east) of the WPSH,inducing the subsequent westward extension of the WPSH.Similar features appeared in the lower troposphere.In a word,the heating on the north-south,east-west of the WPSH worked together,resulting in the WPSH extending more southward and westward in June 2005,which is favorable to the maintenance of the rainbelt in South China.