A new method,named the complete liquid-phase technology,has been applied to prepare catalysts for methanol synthesis.Its main innovative thought lies in preparing slurry catalysts directly from raw solution.Activity t...A new method,named the complete liquid-phase technology,has been applied to prepare catalysts for methanol synthesis.Its main innovative thought lies in preparing slurry catalysts directly from raw solution.Activity tests indicate that the CuZnAl slurry catalyst prepared by the new method can efficiently catalyze conversion of syngas to ethanol in a slurry reactor,while CO conversion reaches 35.9%and ethanol selectivity is more than 20%,with a total alcohol selectivity of more than 87%.No deactivation was found during the 192 h reaction.展开更多
Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spec...Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.展开更多
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated li...Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 2102U genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is relationships were well resolved among every genera Cobetia, Kushneria, Zymobacter, and Halotalea. reported here for the first time. We found that the tested, including Chromohalobacter, Halomonas,展开更多
Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running...Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.展开更多
Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservo...Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservoirs in deep formations around the world.In China,the exploration and development of deep oil and gas are pacing up,especially in ultra-deep formations in the Sichuan Basin,Tarim Basin and Ordos Basin.The reservoirs in these basins feature extremely large depth(over 7000 m),super high temperature(150°C-210°C),super high pressure(over 150 MPa),high acid gas content(H_2S and CO_2),strong heterogeneity,and multiple pressure systems,which pose a series of challenges to wellbore engineering technologies including drilling,drilling fluid,cementing,logging,and completion testing.Therefore,it is necessary to delve into core drilling and testing technologies for deep formations.展开更多
为在智慧建造的基础上,创新竣工交付模式。以Web与建筑信息模型(Building Information Modeling,BIM)技术为基础,通过对服务器选型、网络设备选型等硬件设计;软件框架设计、基于Web与BIM技术的项目模型标准化处理、BIM模型轻量化与质检...为在智慧建造的基础上,创新竣工交付模式。以Web与建筑信息模型(Building Information Modeling,BIM)技术为基础,通过对服务器选型、网络设备选型等硬件设计;软件框架设计、基于Web与BIM技术的项目模型标准化处理、BIM模型轻量化与质检资料的智能关联、电子档案全过程信息化管理与交付等软件设计,提出一种全新的数字化跋工交付平台。将该平台应用于北京市朝阳站建设项目中,实现朝阳站数字建筑和物理建筑的数字李生交付,为运维阶段提供基础数据,探索平台与城建档案馆档案接收系统的业务对接。展开更多
文摘A new method,named the complete liquid-phase technology,has been applied to prepare catalysts for methanol synthesis.Its main innovative thought lies in preparing slurry catalysts directly from raw solution.Activity tests indicate that the CuZnAl slurry catalyst prepared by the new method can efficiently catalyze conversion of syngas to ethanol in a slurry reactor,while CO conversion reaches 35.9%and ethanol selectivity is more than 20%,with a total alcohol selectivity of more than 87%.No deactivation was found during the 192 h reaction.
基金supported by the National Natural Science Foundation of China(No.20706039)the National Basic Research Program(973 Program) of China (No.2005CB221204)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi of China in 2010the Young Scientific and the Technical Fund of Shanxi of China (No.2006021010)
文摘Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.
基金Supported by the National Natural Science Foundation of China(Nos.41006082,31372517)
文摘Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 2102U genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is relationships were well resolved among every genera Cobetia, Kushneria, Zymobacter, and Halotalea. reported here for the first time. We found that the tested, including Chromohalobacter, Halomonas,
基金Supported by the Innovative Research Group Project of China National Natural Science Foundation(51821092)Key Project of China National Natural Science Foundation(U1762214).
文摘Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.
文摘Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservoirs in deep formations around the world.In China,the exploration and development of deep oil and gas are pacing up,especially in ultra-deep formations in the Sichuan Basin,Tarim Basin and Ordos Basin.The reservoirs in these basins feature extremely large depth(over 7000 m),super high temperature(150°C-210°C),super high pressure(over 150 MPa),high acid gas content(H_2S and CO_2),strong heterogeneity,and multiple pressure systems,which pose a series of challenges to wellbore engineering technologies including drilling,drilling fluid,cementing,logging,and completion testing.Therefore,it is necessary to delve into core drilling and testing technologies for deep formations.
文摘为在智慧建造的基础上,创新竣工交付模式。以Web与建筑信息模型(Building Information Modeling,BIM)技术为基础,通过对服务器选型、网络设备选型等硬件设计;软件框架设计、基于Web与BIM技术的项目模型标准化处理、BIM模型轻量化与质检资料的智能关联、电子档案全过程信息化管理与交付等软件设计,提出一种全新的数字化跋工交付平台。将该平台应用于北京市朝阳站建设项目中,实现朝阳站数字建筑和物理建筑的数字李生交付,为运维阶段提供基础数据,探索平台与城建档案馆档案接收系统的业务对接。