In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^...In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^(243)Am within a wide interval of incident energy has been investigated systematically.Based on the available experimental excitation functions,the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly.The total kinetic energy(TKE)of these collisions with fixed collision orientation shows orientation dependence,which can be used to predict the tendency of kinetic energy diffusion.The TKE is dependent on incident energies,as discussed in this paper.We applied the method based on the Coulomb barrier distribution function in our calculations.This allowed us to approximately consider all the collision orientations from tip-tip to side-side.The calculations of excitation functions of^(48)Ca+^(238)U,^(48)Ca+242Pu,and^(48)Ca+^(243)Am are in good agreement with the available experimental data.The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper.The synthesis cross-section of new moscovium isotopes 278−286 Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of^(35,37)Cl+^(248)Cf,^(38,40)Ar+^(247)Bk,^(39,41)K+247 Cm,^(40,42,44,46)Ca+^(243)Am,45 Sc+^(244)Pu,and^(46,48,50)Ti+237Np,51 V+^(238)U at some typical excitation energies.展开更多
The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution re...The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.展开更多
基金supported by National Natural Science Foundation of China (Nos. 12105241, 12175072)Natural Science Foundation of Jiangsu Province (No. BK20210788)+3 种基金Jiangsu Provincial Double-Innovation Doctoral Program (No. JSSCBS20211013)University Science Research Project of Jiangsu Province (No. 21KJB140026)Lv Yang Jin Feng (No. YZLYJFJH2021YXBS130)Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciences (No. IMPKFKT2021001)
文摘In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^(243)Am within a wide interval of incident energy has been investigated systematically.Based on the available experimental excitation functions,the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly.The total kinetic energy(TKE)of these collisions with fixed collision orientation shows orientation dependence,which can be used to predict the tendency of kinetic energy diffusion.The TKE is dependent on incident energies,as discussed in this paper.We applied the method based on the Coulomb barrier distribution function in our calculations.This allowed us to approximately consider all the collision orientations from tip-tip to side-side.The calculations of excitation functions of^(48)Ca+^(238)U,^(48)Ca+242Pu,and^(48)Ca+^(243)Am are in good agreement with the available experimental data.The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper.The synthesis cross-section of new moscovium isotopes 278−286 Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of^(35,37)Cl+^(248)Cf,^(38,40)Ar+^(247)Bk,^(39,41)K+247 Cm,^(40,42,44,46)Ca+^(243)Am,45 Sc+^(244)Pu,and^(46,48,50)Ti+237Np,51 V+^(238)U at some typical excitation energies.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21771035 and 21872024)the Fundamental Research Funds for the Central Universities(grant nos.2412018ZD009 and 2412019FZ009)the Jilin Provincial Research Foundation for Basic Research(grant nos.20200201071JC and 20190303100SF).
文摘The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.