In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the...In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.展开更多
In this paper we research the single machine stochastic JIT scheduling problem subject to the machine breakdowns for preemptive-resume and preemptive-repeat.The objective function of the problem is the sum of squared ...In this paper we research the single machine stochastic JIT scheduling problem subject to the machine breakdowns for preemptive-resume and preemptive-repeat.The objective function of the problem is the sum of squared deviations of the job-expected completion times from the due date.For preemptive-resume,we show that the optimal sequence of the SSDE problem is V-shaped with respect to expected processing times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.We discuss the difference between the SSDE problem and the ESSD problem and show that the optimal solution of the SSDE problem is a good approximate optimal solution of the ESSD problem,and the optimal solution of the SSDE problem is an optimal solution of the ESSD problem under some conditions.For preemptive-repeat,the stochastic JIT scheduling problem has not been solved since the variances of the completion times cannot be computed.We replace the ESSD problem by the SSDE problem.We show that the optimal sequence of the SSDE problem is V-shaped with respect to the expected occupying times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.A new thought is advanced for the research of the preemptive-repeat stochastic JIT scheduling problem.展开更多
This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that th...This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.展开更多
基金Partly supported by the State Major Key Project for Basic Researches
文摘In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.
基金the National Natural Science Foundation of China (Grant No.10471096)
文摘In this paper we research the single machine stochastic JIT scheduling problem subject to the machine breakdowns for preemptive-resume and preemptive-repeat.The objective function of the problem is the sum of squared deviations of the job-expected completion times from the due date.For preemptive-resume,we show that the optimal sequence of the SSDE problem is V-shaped with respect to expected processing times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.We discuss the difference between the SSDE problem and the ESSD problem and show that the optimal solution of the SSDE problem is a good approximate optimal solution of the ESSD problem,and the optimal solution of the SSDE problem is an optimal solution of the ESSD problem under some conditions.For preemptive-repeat,the stochastic JIT scheduling problem has not been solved since the variances of the completion times cannot be computed.We replace the ESSD problem by the SSDE problem.We show that the optimal sequence of the SSDE problem is V-shaped with respect to the expected occupying times.And a dynamic programming algorithm with the pseudopolynomial time complexity is given.A new thought is advanced for the research of the preemptive-repeat stochastic JIT scheduling problem.
基金supported by the Doctoral Foundation of University of Jinan under Grant No.XBS1213
文摘This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.