The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory...The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
An element of a semigroup S is called irreducible if it cannot be expressedas a product of two elements in S both distinct from itself. In this paper we showthat the class C of all completely regular monoids with irre...An element of a semigroup S is called irreducible if it cannot be expressedas a product of two elements in S both distinct from itself. In this paper we showthat the class C of all completely regular monoids with irreducible identity elementssatises the strong isomorphism property and so it is globally determined.展开更多
我国煤层渗透率低且地质条件复杂,采用常规油气储层改造的开发方式难度大、技术适应性差。近年来,基于应力释放的煤层气改造新方法“煤层气水平井水力喷射造穴”很好地解决了这一技术瓶颈问题,但是造穴卸压—增渗的作用机制及其主控地...我国煤层渗透率低且地质条件复杂,采用常规油气储层改造的开发方式难度大、技术适应性差。近年来,基于应力释放的煤层气改造新方法“煤层气水平井水力喷射造穴”很好地解决了这一技术瓶颈问题,但是造穴卸压—增渗的作用机制及其主控地质因素尚不明晰。为此,考虑了煤岩层理和天然裂隙的影响,采用有限元—离散元耦合方法(Finite-Discrete Element Method,FDEM)建立了煤层气水平井扇形洞穴完井数值模型,探究了造穴后岩体的应力演化历程和储层的卸压—增渗机制,并对比分析了不同储层参数(孔隙压缩系数、储层强度、弱面强度和地应力场)对应力释放的影响规律。研究结果表明:(1)围岩演化过程为造穴后岩体收缩,储层发生应力重构,围岩强度逐渐降低,岩体内部发生新生裂隙萌生和原生裂隙扩展,形成开挖损伤区和应力释放区;(2)参数敏感性分析表明孔隙压缩系数是决定造穴完井储层适应性的关键,弱面强度、储层强度和地应力场分布决定了围岩的应力演化模式和裂缝扩展形态;(3)造穴卸压后储层增渗机制为穴周裂缝提升导流能力,储层应力释放提升基质渗透率。结论认为,模型首次综合考虑了地层特点、造穴过程和煤岩裂隙的影响,研究结果揭示了煤层造穴后的应力演化过程及其卸压、增渗作用机制,深化了对煤层气水平井洞穴完井增产机理的认识,对我国煤层储层改造具有重要的工程参考价值。展开更多
In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate example...In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.展开更多
Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and con...Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.展开更多
Complete nitrogen removal was achieved through integrating anammox and autotrophic denitrification in an UASB reactor.The total nitrogen(TN)removal rate increased stepwise from 0.46 to 0.94 kg-N/(m3·d),with an ef...Complete nitrogen removal was achieved through integrating anammox and autotrophic denitrification in an UASB reactor.The total nitrogen(TN)removal rate increased stepwise from 0.46 to 0.94 kg-N/(m3·d),with an effluent TN concentration of below 3.0 mg-N/L achieved.The process is relatively insensitive to the nitrite to ammonium ratio,achieving complete nitrogen removal when their ratio in the influent varied in the range of 1.35-1.55.The added S0 quantity in the system could be utilized to adjust the competition between autotrophic denitrifiers and anammox bacteria.High-throughput sequencing technology indicated that Candidatus_Kuenenia and Thiobacillus were the functional strains for anammox and autotrphic denitrification process,respectively,in the studied reactor.This result provides a theoretical and technical basis for the large-scale application of anaerobic ammonium oxidation process.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jac...This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.展开更多
The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particula...The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants.展开更多
基金This work is financially sponsored by Tarim Oilfield“Study on Adaptability Evaluation and Parameter Optimization of Completion Technology in Bozi Block,Tarim Oilfield”(Item Number:201021113436).
文摘The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
基金The NSF(11261021) of Chinathe NSF(20142BAB201002) of Jiangxi Province
文摘An element of a semigroup S is called irreducible if it cannot be expressedas a product of two elements in S both distinct from itself. In this paper we showthat the class C of all completely regular monoids with irreducible identity elementssatises the strong isomorphism property and so it is globally determined.
文摘我国煤层渗透率低且地质条件复杂,采用常规油气储层改造的开发方式难度大、技术适应性差。近年来,基于应力释放的煤层气改造新方法“煤层气水平井水力喷射造穴”很好地解决了这一技术瓶颈问题,但是造穴卸压—增渗的作用机制及其主控地质因素尚不明晰。为此,考虑了煤岩层理和天然裂隙的影响,采用有限元—离散元耦合方法(Finite-Discrete Element Method,FDEM)建立了煤层气水平井扇形洞穴完井数值模型,探究了造穴后岩体的应力演化历程和储层的卸压—增渗机制,并对比分析了不同储层参数(孔隙压缩系数、储层强度、弱面强度和地应力场)对应力释放的影响规律。研究结果表明:(1)围岩演化过程为造穴后岩体收缩,储层发生应力重构,围岩强度逐渐降低,岩体内部发生新生裂隙萌生和原生裂隙扩展,形成开挖损伤区和应力释放区;(2)参数敏感性分析表明孔隙压缩系数是决定造穴完井储层适应性的关键,弱面强度、储层强度和地应力场分布决定了围岩的应力演化模式和裂缝扩展形态;(3)造穴卸压后储层增渗机制为穴周裂缝提升导流能力,储层应力释放提升基质渗透率。结论认为,模型首次综合考虑了地层特点、造穴过程和煤岩裂隙的影响,研究结果揭示了煤层造穴后的应力演化过程及其卸压、增渗作用机制,深化了对煤层气水平井洞穴完井增产机理的认识,对我国煤层储层改造具有重要的工程参考价值。
基金The project was supported by the National Natural Science Foundation of China(11001037,11102037,11072156)the Fundamental Research Funds for the Central Universities of China(DUT10ZD112,DUT10JS02)
文摘In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.
基金supported by the Natural Science Foundation of China China (Nos. 60533060, 10672032, and 10726067)the Science Foundation of Dalian University of Technology (No. SFDUT07001)
文摘Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
基金This research was supported by the National Natural Science Foundation of China(No.21307160)the Shandong Provincial Natural Science Foundation,China(No.ZR2019MEE038)+2 种基金the Fundamental Research Funds for the Central Universities(19CX02038A)the Open Project of Key Laboratory of Environmental Biotechnology,CAS(Grant No.kf2018003)the Open Project Program of State Key Laboratory of Petroleum Pollution Control(Grant No.PPC2018006),CNPC Research Institute of Safety and Environmental Technology.
文摘Complete nitrogen removal was achieved through integrating anammox and autotrophic denitrification in an UASB reactor.The total nitrogen(TN)removal rate increased stepwise from 0.46 to 0.94 kg-N/(m3·d),with an effluent TN concentration of below 3.0 mg-N/L achieved.The process is relatively insensitive to the nitrite to ammonium ratio,achieving complete nitrogen removal when their ratio in the influent varied in the range of 1.35-1.55.The added S0 quantity in the system could be utilized to adjust the competition between autotrophic denitrifiers and anammox bacteria.High-throughput sequencing technology indicated that Candidatus_Kuenenia and Thiobacillus were the functional strains for anammox and autotrphic denitrification process,respectively,in the studied reactor.This result provides a theoretical and technical basis for the large-scale application of anaerobic ammonium oxidation process.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.
基金We acknowledge the support of the German Research Foundation Grant Nos.SCHM 2456/5-1 and SCHW 307/30-1together with funding for the project initial phase from the German Federal Ministry for Economy and Technology Grant No.KF 2875101WM.(Bundesministerium für Wirtschaft und Technologie)according to a decision of the German Bundestag.
文摘The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants.