A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsi...A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.展开更多
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ...Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.展开更多
Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity f...Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation.展开更多
A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple c...A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.展开更多
文摘A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.
文摘Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation.
基金the National Natural Science Foundation of China(Grant Nos 51609240,11572009&51538001)and the National Basic Research Program of China(Grant No 2014CB047100)
文摘A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.