This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Car...This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.展开更多
Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting...Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
Along with the further development of science and technology, computer hardware and the Intemet are in a rapid development, and information technology has been widely used in all fields so that complex problems are si...Along with the further development of science and technology, computer hardware and the Intemet are in a rapid development, and information technology has been widely used in all fields so that complex problems are simply solved. Because of the needs for the development, software starts to mutually integrate with complex power network, making the scale of software increase greatly. Such a growing trend of software promotes soft-ware development to go beyond a general understanding and control and thus a complex system is formed. It is necessary to strengthen the research of complex network theory, and this is a new way to help people study the complexity of software systems. In this paper, the development course of complex dynamic network is introduced simply and the use of complex power network in the software engineering is summarized. Hopefully, this paper can help the crossover study of complex power network and software engineering in the future.展开更多
Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate struct...Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.展开更多
In order to meet the strict requirements for information in engineering management, the positive interval (0, 1 ] in Shannon information entropy is extended to the real number interval [ - 1, 1 ]. The information the...In order to meet the strict requirements for information in engineering management, the positive interval (0, 1 ] in Shannon information entropy is extended to the real number interval [ - 1, 1 ]. The information theory and the decision theory are combined effectively, and the deficiencies that the traditional Bayes decision-making methods only consider a single factor are made up for. The multi-factors engineering decision-making methods are proposed, and some critical problems are solved in the practical engineering management decision-making process.展开更多
CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidificati...CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.展开更多
In four aspects, which are the leading exploration of mine and tunnel f engineering geological hazard prospecting and engineering shock resistance; non-destructive testing of engineering quality 1 the measurement of...In four aspects, which are the leading exploration of mine and tunnel f engineering geological hazard prospecting and engineering shock resistance; non-destructive testing of engineering quality 1 the measurement of rock physical properties, this pope gives a detailed summary and some comments on the present situation of the research and application of the ideas, theories and methods of engineering multiwave seismic prospecting. The content includes: the prospecting of coal field caved pillar, underground gallery, underground cavity and the fault ahead of tunnel; the exploration of earth surface Karst collapse, active fault, and shock resistance Of underground lifeline engineering; the dynamic non-destructive testing of quality and boring capacity of pile foundation, the non-destructive testing of strength, thickness and defects of concrete pavement, and the non-destructive testing of sub marine tunnel engineering quality ; the measurement of rock physical properties under high temperature and high pressure and the determination of physical properties of irregular rock samples. Some existing problems are discussed and the direction which should be developed in the future is proposed.展开更多
To solve the teaching difficulties,including hard cultivating engineering thinking,a reasonable transition of professional training,and deep cooperation of students,which impeded the cultivation effectiveness of stude...To solve the teaching difficulties,including hard cultivating engineering thinking,a reasonable transition of professional training,and deep cooperation of students,which impeded the cultivation effectiveness of students’ability to solve complex engineering problems,the paper proposed a Zongheng group teaching model of curriculum cluster based on projects.Firstly,from the perspective of Metaverse,and considering the professional,current teaching situation and learning situation,we analyzed the professional background and proposed the Zongheng group teaching model of curriculum cluster.Then,the connotation,teaching construction and implementation details are explained.After that,we summarized the teaching effect about the 2 years of exploration and practice in the major of software engineering at College of Computer and Information Technology in Mudanjiang Normal University,to clarify the effect of teaching reform.2 years of teaching practice shows that making full use of the advantages of curriculum cluster,Zongheng group and the project-based teaching method,the long-range training,in-depth student cooperation,and the students’ability of solving complex engineering problems are improved.展开更多
Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a c...Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.展开更多
The interface is of paramount importance in heterostructures,as it can be considered as a device in accordance with Kroemer’s dictum.In perovskite solar cells(PSCs),optimizing the interface between the perovskite lay...The interface is of paramount importance in heterostructures,as it can be considered as a device in accordance with Kroemer’s dictum.In perovskite solar cells(PSCs),optimizing the interface between the perovskite layer and the hole transport layer is known to be an effective method for enhancing PSC device performance.Herein,a metal ruthenium complex coded as C101 is introduced to the perovskite(CsPbI_(2)Br)/hole transport layer(PTAA)interface as a“charge driven motor”to selectively extract holes from CsPbI_(2)Br and then transfer them to PTAA,minimizing the voltage loss in PSCs.More significantly,the introduction of C101 layer effectively passivates the surface of CsPbI_(2)Br film and reduces the defect density of CsPbI_(2)Br film due to the covalent bond between the CsPbI_(2)Br and the–C=O group in C101.The photovoltaic performance of CsPbI_(2)Br PSCs is enhanced by 23.60%upon the introduction of C101 interfacial layer,with the champion CsPbI_(2)Br PSC exhibiting a power conversion efficiency of 14.96%in a reverse scan,a short-circuit current of 15.84 mA·cm^(−2),an open-circuit voltage of 1.15 V,and a fill factor of 82.03%.Additionally,the introduction of C101 simultaneously enhances the humidity tolerance of CsPbI_(2)Br PSCs.展开更多
The outer blood-retina barrier(oBRB),crucial for the survival and the proper functioning of the overlying retinal layers,is disrupted in numerous diseases affecting the retina,leading to the loss of the photoreceptors...The outer blood-retina barrier(oBRB),crucial for the survival and the proper functioning of the overlying retinal layers,is disrupted in numerous diseases affecting the retina,leading to the loss of the photoreceptors and ultimately of vision.To study the oBRB and/or its degeneration,many in vitro oBRB models have been developed,notably to investigate potential therapeutic strategies against retinal diseases.Indeed,to this day,most of these pathologies are untreatable,especially once the first signs of degeneration are observed.To cure those patients,a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue.After a description of the oBRB and the related diseases,this review presents an overview of the oBRB models,from the simplest to the most complex.Then,we propose a discussion over the used cell types,for their relevance to study or treat the oBRB.Models designed for in vitro applications are then examined,by paying particular attention to the design evolution in the last years,the development of pathological models and the benefits of co-culture models,including both the retinal pigment epithelium and the choroid.Lastly,this review focuses on the models developed for in vivo implantation,with special emphasis on the choice of the material,its processing and its characterization,before discussing the reported pre-clinical and clinical trials.展开更多
One Cd(II) complex based on dicarboxylate and N-auxiliary ligand, namely, [Cd(aip)(m-bix)]n (1, H2aip = 5-aminoisophthalic acid, m-bix = 1,3-bis(imidazol-l-yl-methyl)ben- zene), was successfully synthesized ...One Cd(II) complex based on dicarboxylate and N-auxiliary ligand, namely, [Cd(aip)(m-bix)]n (1, H2aip = 5-aminoisophthalic acid, m-bix = 1,3-bis(imidazol-l-yl-methyl)ben- zene), was successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis reveals that 1 belongs to the orthorhombic system, space group Pbca with a = 14.0790(11), b = 17.0038(15), c = 17.3191(16), V= 4146.1(6) A3, Z = 8, D,. = 1.698 g.cm"3, p = 1.095 mm-1, F(000) = 2128, the final R = 0.0268 and wR = 0.0623. Complex 1 is a three-dimensional architecture with fsc-3,5-Cmce-1 topology, in which the metal ions act as rare 5-connected nodes. The TGA, XRD and luminescent properties of I were studied.展开更多
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarl...The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south.The Demala Group complex,a set of high-grade metamorphic gneisses widely distributed in the Chayu area,is known as the Precambrian metamorphic basement of the Lhasa Block in the area.According to field-based investigations and microstructure analysis,the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses,biotite quartzofeldspathic gneiss,granitic gneiss,amphibolite,mica schist,and quartz schist,with many leucogranite veins.The zircon U-Pb ages of two granitic gneiss samples are 205±1 Ma and 218±1 Ma,respectively,representing the ages of their protoliths.The zircons from two biotite plagiogneisses samples show core-rim structures.The U-Pb ages of the cores are mainly 644–446 Ma,1213–865 Ma,and 1780–1400 Ma,reflecting the age characteristics of clastic zircons during sedimentation of the original rocks.The U-Pb ages of the rims are from 203±2 Ma to 190±1 Ma,which represent the age of metamorphism.The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma,interpreted as the age of the anatexis in the Demala Group complex.Biotite and muscovite separates were selected from the granitic gneiss,banded gneiss,and leucogranite veins for 40Ar/39Ar dating.The plateau ages of three muscovite samples are 16.56±0.21 Ma,16.90±0.21 Ma,and 23.40±0.31 Ma,and the plateau ages of four biotite samples are 16.70±0.24 Ma,16.14±0.19 Ma,15.88±0.20 Ma,and 14.39±0.20 Ma.The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex.Combined with the previous research results of the Demala Group complex,the authors refer that the Demala Group complex should be a set of metamorphic complex.The complex includes not only Precambrian basement metamorphic rock series,but also Paleozoic sedimentary rock and Mesozoic granitic rock.Based on the deformation characteristics,the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic,namely Late Triassic-Early Jurassic(203–190 Ma)and Oligocene–Miocene(24–14 Ma).The early stage of metamorphism(ranging from 203–190 Ma)was related to the Late Triassic tectono-magmatism in the area.The anatexis and uplifting-exhumation of the later stage(24–14 Ma)were related to the shearing of the Jiali strike-slip fault zone.The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.展开更多
This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,In...This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.展开更多
Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate,which represents the ancient ocean basin extinction location.Nevertheless,there exist many di...Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate,which represents the ancient ocean basin extinction location.Nevertheless,there exist many disputes on the age,material source,and tectonic attribute of the Lancang Group,located in Southwest Yunnan,China.In this paper,the LA-ICP-MS detrital zircon U‒Pb chronology of nine metamorphic rocks in the Lancang Group was carried out.The U‒Pb ages of the three detrital zircons mainly range from 590-550 Ma,980-910 Ma,and 1150-1490 Ma,with the youngest detrital zircons having a peak age of about 560 Ma.The U‒Pb ages of the six detrital zircons mainly range from 440-460 Ma and 980-910 Ma,and the youngest detrital zircon has a peak age of about 445 Ma.In the Lancang Group,metamorphic acidic volcanic rocks,basic volcanic rocks,intermediate-acid intrusive rocks,and high-pressure metamorphic rocks are exposed in the form of tectonic lens in schist,rendering typical melange structural characteristics of“block+matrix”.Considering regional deformation and chronology,material composition characteristics,and the previous data,this study thinks the Lancang Group may be an early Paleozoic tectonic accretionary complex formed by the eastward subduction of the Changning-Menglian Proto-Tethys Ocean,which provides an important constraint for the Tethys evolution.展开更多
A novel lanthanide coordination polymer formulated as [Nd(dpdo) 4(H 2O) 3] 3·4.5H 2O·dpdo 1(dpdo=4,4′-dipyrazine-dioxide) was synthesized and structurally characterized. The Nd 3+ ions are bridged b...A novel lanthanide coordination polymer formulated as [Nd(dpdo) 4(H 2O) 3] 3·4.5H 2O·dpdo 1(dpdo=4,4′-dipyrazine-dioxide) was synthesized and structurally characterized. The Nd 3+ ions are bridged by dpdo ligands in a cis-mode to form a zigzag chain along direction. Meanwhile, each Nd 3+ ion is coordinated with three terminal dpdo molecules. One of them is overlapped with the bridging one through π-π stackings, and the other two are bound to the opposite directions of the bridging ones, producing a ribbon-like motif with rectangular cavity. These adjacent ribbons are connected through inter-molecular π-π stackings to give parquet-like architecture with a large rectangular channel (1.108 nm×1.660 nm) in which the crystal lattice water molecules and ClO 4 - anions are included. Thermal analysis shows that the solvate dpdo and water molecules can be removed at lower temperature, while coordinated dpdo molecules are lost simultaneously at higher temperature.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit...Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.展开更多
基金supported by the National Water Pollution Control and Management Technology Major Projects(Grant No. 2009ZX07423-001)the National Natural Science Foundation of China (Grants No.51179069and 40971300)the Fundamental Research Funds for the Central Universities (Grants No.10QX43,09MG16,and 10QG23)
文摘This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
基金supported by the National Natural Science Foundation of China(51809169,51879159)Chang Jiang Scholars Program(T2014099)+2 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)National Key Research and Development Program of China(2019YFB1704203,2019YFC0312400).
文摘Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘Along with the further development of science and technology, computer hardware and the Intemet are in a rapid development, and information technology has been widely used in all fields so that complex problems are simply solved. Because of the needs for the development, software starts to mutually integrate with complex power network, making the scale of software increase greatly. Such a growing trend of software promotes soft-ware development to go beyond a general understanding and control and thus a complex system is formed. It is necessary to strengthen the research of complex network theory, and this is a new way to help people study the complexity of software systems. In this paper, the development course of complex dynamic network is introduced simply and the use of complex power network in the software engineering is summarized. Hopefully, this paper can help the crossover study of complex power network and software engineering in the future.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2015AA042101)
文摘Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.
文摘In order to meet the strict requirements for information in engineering management, the positive interval (0, 1 ] in Shannon information entropy is extended to the real number interval [ - 1, 1 ]. The information theory and the decision theory are combined effectively, and the deficiencies that the traditional Bayes decision-making methods only consider a single factor are made up for. The multi-factors engineering decision-making methods are proposed, and some critical problems are solved in the practical engineering management decision-making process.
文摘CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.
文摘In four aspects, which are the leading exploration of mine and tunnel f engineering geological hazard prospecting and engineering shock resistance; non-destructive testing of engineering quality 1 the measurement of rock physical properties, this pope gives a detailed summary and some comments on the present situation of the research and application of the ideas, theories and methods of engineering multiwave seismic prospecting. The content includes: the prospecting of coal field caved pillar, underground gallery, underground cavity and the fault ahead of tunnel; the exploration of earth surface Karst collapse, active fault, and shock resistance Of underground lifeline engineering; the dynamic non-destructive testing of quality and boring capacity of pile foundation, the non-destructive testing of strength, thickness and defects of concrete pavement, and the non-destructive testing of sub marine tunnel engineering quality ; the measurement of rock physical properties under high temperature and high pressure and the determination of physical properties of irregular rock samples. Some existing problems are discussed and the direction which should be developed in the future is proposed.
基金supported by the Foundation of Mudanjiang Normal University“Research and Practice on the Construction of Software Engineering Professional Course Group for Engineering Education Certification”(Grant NO.21-XJ21042),“Quality Course Construction for Graduate Course:Information Retrieval and Thesis Writing”(Grant NO.JPKC-2022011)Research Foundation of Education Department of Heilongjiang“Exploration and Practice of New Engineering Talents Training Mode for Computer Majors for Free Trade College”(Grant NO.SJGY 20200732).
文摘To solve the teaching difficulties,including hard cultivating engineering thinking,a reasonable transition of professional training,and deep cooperation of students,which impeded the cultivation effectiveness of students’ability to solve complex engineering problems,the paper proposed a Zongheng group teaching model of curriculum cluster based on projects.Firstly,from the perspective of Metaverse,and considering the professional,current teaching situation and learning situation,we analyzed the professional background and proposed the Zongheng group teaching model of curriculum cluster.Then,the connotation,teaching construction and implementation details are explained.After that,we summarized the teaching effect about the 2 years of exploration and practice in the major of software engineering at College of Computer and Information Technology in Mudanjiang Normal University,to clarify the effect of teaching reform.2 years of teaching practice shows that making full use of the advantages of curriculum cluster,Zongheng group and the project-based teaching method,the long-range training,in-depth student cooperation,and the students’ability of solving complex engineering problems are improved.
基金Chongqing Municipal Education Commission Science and Technology Research Project(Project No.KJQN202301910).
文摘Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.
基金supported by the National Natural Science Foundation of China(52103223)the Natural Science Basic Research Program of Shaanxi(2023-JC-YB-413)+2 种基金the Natural Science Foundation of Heilongjiang Province of China(YQ2023E027)the Fundamental Research Funds for the Central Universities(3072024XX2616)the Key Laboratory of Functional Molecular Solids,Ministry of Education(FMS20230010).
文摘The interface is of paramount importance in heterostructures,as it can be considered as a device in accordance with Kroemer’s dictum.In perovskite solar cells(PSCs),optimizing the interface between the perovskite layer and the hole transport layer is known to be an effective method for enhancing PSC device performance.Herein,a metal ruthenium complex coded as C101 is introduced to the perovskite(CsPbI_(2)Br)/hole transport layer(PTAA)interface as a“charge driven motor”to selectively extract holes from CsPbI_(2)Br and then transfer them to PTAA,minimizing the voltage loss in PSCs.More significantly,the introduction of C101 layer effectively passivates the surface of CsPbI_(2)Br film and reduces the defect density of CsPbI_(2)Br film due to the covalent bond between the CsPbI_(2)Br and the–C=O group in C101.The photovoltaic performance of CsPbI_(2)Br PSCs is enhanced by 23.60%upon the introduction of C101 interfacial layer,with the champion CsPbI_(2)Br PSC exhibiting a power conversion efficiency of 14.96%in a reverse scan,a short-circuit current of 15.84 mA·cm^(−2),an open-circuit voltage of 1.15 V,and a fill factor of 82.03%.Additionally,the introduction of C101 simultaneously enhances the humidity tolerance of CsPbI_(2)Br PSCs.
文摘The outer blood-retina barrier(oBRB),crucial for the survival and the proper functioning of the overlying retinal layers,is disrupted in numerous diseases affecting the retina,leading to the loss of the photoreceptors and ultimately of vision.To study the oBRB and/or its degeneration,many in vitro oBRB models have been developed,notably to investigate potential therapeutic strategies against retinal diseases.Indeed,to this day,most of these pathologies are untreatable,especially once the first signs of degeneration are observed.To cure those patients,a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue.After a description of the oBRB and the related diseases,this review presents an overview of the oBRB models,from the simplest to the most complex.Then,we propose a discussion over the used cell types,for their relevance to study or treat the oBRB.Models designed for in vitro applications are then examined,by paying particular attention to the design evolution in the last years,the development of pathological models and the benefits of co-culture models,including both the retinal pigment epithelium and the choroid.Lastly,this review focuses on the models developed for in vivo implantation,with special emphasis on the choice of the material,its processing and its characterization,before discussing the reported pre-clinical and clinical trials.
基金Supported by the National Natural Science Foundation of China (No. 20901004)
文摘One Cd(II) complex based on dicarboxylate and N-auxiliary ligand, namely, [Cd(aip)(m-bix)]n (1, H2aip = 5-aminoisophthalic acid, m-bix = 1,3-bis(imidazol-l-yl-methyl)ben- zene), was successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis reveals that 1 belongs to the orthorhombic system, space group Pbca with a = 14.0790(11), b = 17.0038(15), c = 17.3191(16), V= 4146.1(6) A3, Z = 8, D,. = 1.698 g.cm"3, p = 1.095 mm-1, F(000) = 2128, the final R = 0.0268 and wR = 0.0623. Complex 1 is a three-dimensional architecture with fsc-3,5-Cmce-1 topology, in which the metal ions act as rare 5-connected nodes. The TGA, XRD and luminescent properties of I were studied.
基金a project of National Natural Science Foundation of China(41773026)two geological survey projects initiated by the China Geological Survey(DD20190053,DD20160021).
文摘The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau.This region was considered to be in the southeastward extension of the Lhasa Block,bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south.The Demala Group complex,a set of high-grade metamorphic gneisses widely distributed in the Chayu area,is known as the Precambrian metamorphic basement of the Lhasa Block in the area.According to field-based investigations and microstructure analysis,the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses,biotite quartzofeldspathic gneiss,granitic gneiss,amphibolite,mica schist,and quartz schist,with many leucogranite veins.The zircon U-Pb ages of two granitic gneiss samples are 205±1 Ma and 218±1 Ma,respectively,representing the ages of their protoliths.The zircons from two biotite plagiogneisses samples show core-rim structures.The U-Pb ages of the cores are mainly 644–446 Ma,1213–865 Ma,and 1780–1400 Ma,reflecting the age characteristics of clastic zircons during sedimentation of the original rocks.The U-Pb ages of the rims are from 203±2 Ma to 190±1 Ma,which represent the age of metamorphism.The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma,interpreted as the age of the anatexis in the Demala Group complex.Biotite and muscovite separates were selected from the granitic gneiss,banded gneiss,and leucogranite veins for 40Ar/39Ar dating.The plateau ages of three muscovite samples are 16.56±0.21 Ma,16.90±0.21 Ma,and 23.40±0.31 Ma,and the plateau ages of four biotite samples are 16.70±0.24 Ma,16.14±0.19 Ma,15.88±0.20 Ma,and 14.39±0.20 Ma.The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex.Combined with the previous research results of the Demala Group complex,the authors refer that the Demala Group complex should be a set of metamorphic complex.The complex includes not only Precambrian basement metamorphic rock series,but also Paleozoic sedimentary rock and Mesozoic granitic rock.Based on the deformation characteristics,the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic,namely Late Triassic-Early Jurassic(203–190 Ma)and Oligocene–Miocene(24–14 Ma).The early stage of metamorphism(ranging from 203–190 Ma)was related to the Late Triassic tectono-magmatism in the area.The anatexis and uplifting-exhumation of the later stage(24–14 Ma)were related to the shearing of the Jiali strike-slip fault zone.The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.
基金Supported by the Fundamental Research Funds for the Central Universities of China(DUT11NY09)
文摘This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.
基金supported by the Second Comprehensive Scientific Investigation and Research Program on the Qinghai-Tibet Plateau(2019QZKK0702)the China Geological Survey Program(DD20221715,DD20190053).
文摘Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate,which represents the ancient ocean basin extinction location.Nevertheless,there exist many disputes on the age,material source,and tectonic attribute of the Lancang Group,located in Southwest Yunnan,China.In this paper,the LA-ICP-MS detrital zircon U‒Pb chronology of nine metamorphic rocks in the Lancang Group was carried out.The U‒Pb ages of the three detrital zircons mainly range from 590-550 Ma,980-910 Ma,and 1150-1490 Ma,with the youngest detrital zircons having a peak age of about 560 Ma.The U‒Pb ages of the six detrital zircons mainly range from 440-460 Ma and 980-910 Ma,and the youngest detrital zircon has a peak age of about 445 Ma.In the Lancang Group,metamorphic acidic volcanic rocks,basic volcanic rocks,intermediate-acid intrusive rocks,and high-pressure metamorphic rocks are exposed in the form of tectonic lens in schist,rendering typical melange structural characteristics of“block+matrix”.Considering regional deformation and chronology,material composition characteristics,and the previous data,this study thinks the Lancang Group may be an early Paleozoic tectonic accretionary complex formed by the eastward subduction of the Changning-Menglian Proto-Tethys Ocean,which provides an important constraint for the Tethys evolution.
文摘A novel lanthanide coordination polymer formulated as [Nd(dpdo) 4(H 2O) 3] 3·4.5H 2O·dpdo 1(dpdo=4,4′-dipyrazine-dioxide) was synthesized and structurally characterized. The Nd 3+ ions are bridged by dpdo ligands in a cis-mode to form a zigzag chain along direction. Meanwhile, each Nd 3+ ion is coordinated with three terminal dpdo molecules. One of them is overlapped with the bridging one through π-π stackings, and the other two are bound to the opposite directions of the bridging ones, producing a ribbon-like motif with rectangular cavity. These adjacent ribbons are connected through inter-molecular π-π stackings to give parquet-like architecture with a large rectangular channel (1.108 nm×1.660 nm) in which the crystal lattice water molecules and ClO 4 - anions are included. Thermal analysis shows that the solvate dpdo and water molecules can be removed at lower temperature, while coordinated dpdo molecules are lost simultaneously at higher temperature.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
文摘Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution.