Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlat...Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to re...The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-freque...An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.展开更多
The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement diso...The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).展开更多
Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circu...Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circular comer crack of welded joints is calculated based on FRANC3D with ABAQUS. Effects of different corrosion pit sizes, crack aspect ratios, and crack depths on stress intensity factor are analyzed. The results show that pit depth plays a major role in stress intensity factor, while the effect of pit radius is relatively small. The cracking modes of the surface and the deepest point are mode I, and mixed modes I and II, respectively. Effects of pit depths, crack aspect ratios, and crack depths on the stress intensity factor at the surface point are greater than at the deepest point.展开更多
Aim: To determine the frequency and the risk factors of Complex Regional Pain syndrome (CRPS) in Cotonou (Benin). Patients and Méthod: This has been a transversal study carried out over 22 years on files of CRPS ...Aim: To determine the frequency and the risk factors of Complex Regional Pain syndrome (CRPS) in Cotonou (Benin). Patients and Méthod: This has been a transversal study carried out over 22 years on files of CRPS infected patients and submitted to rheumatologic consultation in the National Hospital University of Cotonou. Results: 73 out of 17,342 patients examined (0.42%) were suffering from CRPS. Those 73 patients (40 women, 54.8% and 33 men, 45.2%) were in average 54.66 years old and enjoyed an average duration of evolution of 5.79 months. The trauma (41 cases, 56.1%), the stroke (19 cases, 25%), the diabetes (8 cases, 11.3), were the main risk factors that were observed. CRPS was preferably located at the shoulder-hand (34.2%), shoulder (28.8%), wrist-hand (16.4%) and knee (11%). Inflammatory pain was observed in 55 cases. The treatment was dominated by griseofulvina (41 cases, 56.1%), antiinflammatory drugs (38 cases, 52%), analgesic (20 cases, 27, 3%), joint injection by betamethasone (17 cases, 27%). Conclusion: CRPS is not rare in our country. The first risk factor remains the trauma in rheumatologic consultation in Cotonou.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteoro...Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.展开更多
In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond d...In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.展开更多
Flying an aircraft in low visibility is still a challenging task for the pilot.It requires precise and accurate situational awareness(SA)in real-time.A Head-up Display(HUD)is used to project collimated internal and ex...Flying an aircraft in low visibility is still a challenging task for the pilot.It requires precise and accurate situational awareness(SA)in real-time.A Head-up Display(HUD)is used to project collimated internal and externalflight information on a transparent screen in the pilot’s forwardfield of view,which eliminates the change of eye position between Head-Down-Display(HDD)instru-ments and outer view through the windshield.Implementation of HUD increases the SA and reduces the workload for the pilot.But to provide a betterflying capability for the pilot,projecting extensive information on HUD causes human factor issues that reduce pilot performance and lead to accidents in low visibility conditions.The literature shows that human error is the leading cause of more than 70%of aviation accidents.In this study,the ability of the pilot able to read background and symbology information of HUD at a different level of back-ground seen complexity,such as symbology brightness,transition time,amount of Symbology,size etc.,in low visibility conditions is discussed.The result shows that increased complexity on the HUD causes more detection errors.展开更多
Recent studies have shown that a 9-hour fast in mice reduces the amount of time spent immobile in the forced swimming test.Howeve r,whether 9-hour fasting has therapeutic effects in female mice with depressive symptom...Recent studies have shown that a 9-hour fast in mice reduces the amount of time spent immobile in the forced swimming test.Howeve r,whether 9-hour fasting has therapeutic effects in female mice with depressive symptoms has not been established.Therefore,in this study,we simulated perimenopausal depression via an ovariectomy in mice,and subjected them to a single 9-hour fasting 7 days later.We found that the ovariectomy increased the time spent immobile in the forced swimming test,inhibited expression of the mammalian target of rapamycin complex 1 signaling pathway in the hippocampus and prefro ntal cortex,and decreased the density of dendritic spines in the hippocampus.The 9-hour acute fasting alleviated the above-mentioned phenomena.Furthermore,all of the antidepressant-like effects of 9-hour fasting were reve rsed by an inhibitor of the mammalian to rget of rapamycin complex 1.Electrophysiology data showed a remarkable increase in long-term potentiation in the hippocampal CA1 of the ovariectomized mice subjected to fasting compared with the findings in the ovariectomized mice not subjected to fasting.These findings show that the antidepressant-like effects of 9-hour fasting may be related to the activation of the mammalian target of the rapamycin complex 1 signaling pathway and synaptic plasticity in the mammalian hippocampus.Thus,fasting may be a potential treatment for depression.展开更多
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re...Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62162040 and 11861045)。
文摘Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金Project supported by the National Natural Science Foundation of China (Grant No 50278098).
文摘The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金Supported by National Natural Science Foundation of China (No. 60872065)
文摘An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively.
文摘The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).
基金supported by the National Natural Science Foundation of China(51378430 and 51378431)
文摘Taking cruciform welded joints under different corrosion degrees, together with 45° inclined angle and full penetration load-carrying fillet, as the research object, the stress intensity factor of a quarter-circular comer crack of welded joints is calculated based on FRANC3D with ABAQUS. Effects of different corrosion pit sizes, crack aspect ratios, and crack depths on stress intensity factor are analyzed. The results show that pit depth plays a major role in stress intensity factor, while the effect of pit radius is relatively small. The cracking modes of the surface and the deepest point are mode I, and mixed modes I and II, respectively. Effects of pit depths, crack aspect ratios, and crack depths on the stress intensity factor at the surface point are greater than at the deepest point.
文摘Aim: To determine the frequency and the risk factors of Complex Regional Pain syndrome (CRPS) in Cotonou (Benin). Patients and Méthod: This has been a transversal study carried out over 22 years on files of CRPS infected patients and submitted to rheumatologic consultation in the National Hospital University of Cotonou. Results: 73 out of 17,342 patients examined (0.42%) were suffering from CRPS. Those 73 patients (40 women, 54.8% and 33 men, 45.2%) were in average 54.66 years old and enjoyed an average duration of evolution of 5.79 months. The trauma (41 cases, 56.1%), the stroke (19 cases, 25%), the diabetes (8 cases, 11.3), were the main risk factors that were observed. CRPS was preferably located at the shoulder-hand (34.2%), shoulder (28.8%), wrist-hand (16.4%) and knee (11%). Inflammatory pain was observed in 55 cases. The treatment was dominated by griseofulvina (41 cases, 56.1%), antiinflammatory drugs (38 cases, 52%), analgesic (20 cases, 27, 3%), joint injection by betamethasone (17 cases, 27%). Conclusion: CRPS is not rare in our country. The first risk factor remains the trauma in rheumatologic consultation in Cotonou.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
文摘Since 1991, air pollution has gained special attention in Taiwan after a petrochemical complex was constructed in Mailiao Township, Yunlin County. We explored the association between the magnitude of PM2.5 and meteorological factors during 2012-2016. Our findings revealed that 1) mean PM2.5 levels gradually decreased from 30.70 μg/m3 in 2013 to 25.36 μg/m3 in 2016;2) wind speed is the main determinant of air quality—air quality significantly improved when it was faster than 4 m/sec;and 3) wind direction is another determinant of air quality—when the wind direction was southerly, air quality improved. Elevated PM2.5 levels were defined as those hourly levels higher than the third quartile (36 μg/m3). The significantly negative predictive factors for elevated PM2.5 levels were the summer or autumn seasons, rainfall, increased wind speed, and wind direction from 150° to 230° from the north. The significantly positive predictive factors for elevated PM2.5 levels were working hours from 6 a.m. to 2 p.m., a temperature between 11°C and 25°C, relative humidity between 40% and 68%, and wind direction (e.g., northerly wind, northeasterly wind, and easterly wind). The predictive formula is attached in the Appendix. Therefore, people should protect themselves on these high-risk days.
文摘In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.
文摘Flying an aircraft in low visibility is still a challenging task for the pilot.It requires precise and accurate situational awareness(SA)in real-time.A Head-up Display(HUD)is used to project collimated internal and externalflight information on a transparent screen in the pilot’s forwardfield of view,which eliminates the change of eye position between Head-Down-Display(HDD)instru-ments and outer view through the windshield.Implementation of HUD increases the SA and reduces the workload for the pilot.But to provide a betterflying capability for the pilot,projecting extensive information on HUD causes human factor issues that reduce pilot performance and lead to accidents in low visibility conditions.The literature shows that human error is the leading cause of more than 70%of aviation accidents.In this study,the ability of the pilot able to read background and symbology information of HUD at a different level of back-ground seen complexity,such as symbology brightness,transition time,amount of Symbology,size etc.,in low visibility conditions is discussed.The result shows that increased complexity on the HUD causes more detection errors.
基金supported by the National Natural Science Foundation of China,No.81871070Jilin Province Medical and Health Talents,No.2020SCZT021Changchun City Science and Technology Development Plan Key Project,No.21ZGY16 (all to BJL)。
文摘Recent studies have shown that a 9-hour fast in mice reduces the amount of time spent immobile in the forced swimming test.Howeve r,whether 9-hour fasting has therapeutic effects in female mice with depressive symptoms has not been established.Therefore,in this study,we simulated perimenopausal depression via an ovariectomy in mice,and subjected them to a single 9-hour fasting 7 days later.We found that the ovariectomy increased the time spent immobile in the forced swimming test,inhibited expression of the mammalian target of rapamycin complex 1 signaling pathway in the hippocampus and prefro ntal cortex,and decreased the density of dendritic spines in the hippocampus.The 9-hour acute fasting alleviated the above-mentioned phenomena.Furthermore,all of the antidepressant-like effects of 9-hour fasting were reve rsed by an inhibitor of the mammalian to rget of rapamycin complex 1.Electrophysiology data showed a remarkable increase in long-term potentiation in the hippocampal CA1 of the ovariectomized mice subjected to fasting compared with the findings in the ovariectomized mice not subjected to fasting.These findings show that the antidepressant-like effects of 9-hour fasting may be related to the activation of the mammalian target of the rapamycin complex 1 signaling pathway and synaptic plasticity in the mammalian hippocampus.Thus,fasting may be a potential treatment for depression.
基金Supported by the Natural Science Foundation of Anhui Province,No.2008085MH251Key Research and Development Project of Anhui Province,No.202004J07020037+1 种基金Anhui Provincial Institute of Translational Medicine,No.2021zhyx-C19National Undergraduate Innovation and Entrepreneurship training program,No.202010366016。
文摘Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.