Smart cities have different contradicting goals having no apparent solution.The selection of the appropriate solution,which is considered the best compromise among the candidates,is known as complex problem-solving.Sm...Smart cities have different contradicting goals having no apparent solution.The selection of the appropriate solution,which is considered the best compromise among the candidates,is known as complex problem-solving.Smart city administrators face different problems of complex nature,such as optimal energy trading in microgrids and optimal comfort index in smart homes,to mention a few.This paper proposes a novel architecture to offer complex problem solutions as a service(CPSaaS)based on predictive model optimization and optimal task orchestration to offer solutions to different problems in a smart city.Predictive model optimization uses a machine learning module and optimization objective to compute the given problem’s solutions.The task orchestration module helps decompose the complex problem in small tasks and deploy them on real-world physical sensors and actuators.The proposed architecture is hierarchical and modular,making it robust against faults and easy to maintain.The proposed architecture’s evaluation results highlight its strengths in fault tolerance,accuracy,and processing speed.展开更多
The objective is to study changes in EEG time-domain Kolmogorov entropy and cortical lateralization of brain function areas during complex problem solving mental task in healthy human subjects. EEG data for healthy su...The objective is to study changes in EEG time-domain Kolmogorov entropy and cortical lateralization of brain function areas during complex problem solving mental task in healthy human subjects. EEG data for healthy subjects are acquired during complex problem solving mental task using a net of 6 electrodes. The subject was given a nontrivial multiplication problem to solve and the signals were recorded for 10s during the task. Kolmogorov entropy values during the task were calculated. It was found that Kolmogorov entropy values were obviously greater in P4 channel (right) than ones in P3 channel (left) during complex problem solving task. It indicated that all subjects presented significant left parietal lateralization for the total frequency spectrum. These results suggest that it may be possible to noninvasively lateralize, and even eventually localize, cerebral regions essential for particular mental tasks from scalp EEG data.展开更多
In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between t...In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering. The obtained results show that for either linear or nonlinear systems and for a lot of control problems similar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply. At last, it turns round to observe the biotic and social systems and some analyses are given.展开更多
In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary...In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and...This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and uniqueness of solutions for such boundary value problem. Then by using the methods of successive iteration and parameter extension, the existence of solutions for this problem is proved.展开更多
A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
The present paper deals with the average case complexity of the shift—invariant problem. The main aim is to give a new proof of the upper bound of average error of finite element method. Our method is based on the te...The present paper deals with the average case complexity of the shift—invariant problem. The main aim is to give a new proof of the upper bound of average error of finite element method. Our method is based on the techniques proposed by Heinrich (1990). We also point out an essential error regarding the proof of the upper bound in A. G. Werschulz (1991).展开更多
In this article,we discuss that an oblique derivative boundary value problem for nonlinear uniformly elliptic complex equation of second order with the boundary conditions in a multiply connected unbounded domain D.Th...In this article,we discuss that an oblique derivative boundary value problem for nonlinear uniformly elliptic complex equation of second order with the boundary conditions in a multiply connected unbounded domain D.The above boundary value problem will be called Problem P.Under certain conditions,by using the priori estimates of solutions and Leray-Schauder fixed point theorem,we can obtain some results of the solvability for the above boundary value problem(0.1) and(0.2).展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a m...In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a multiply connected unbounded domain D, the above boundary value problem will be called Problem A. If the complex Equation (0.1) satisfies the conditions similar to Condition C of (1.1), and the boundary condition (0.2) satisfies the conditions similar to (1.5), then we can obtain approximate solutions of the boundary value problems (0.1) and (0.2). Moreover the error estimates of approximate solutions for the boundary value problem is also given. The boundary value problem possesses many applications in mechanics and physics etc., for instance from (5.114) and (5.115), Chapter VI, [1], we see that Problem A of (0.1) possesses the important application to the shell and elasticity.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
In this article, we first introduce the general linear elliptic complex equation of first order with certain conditions, and then propose discontinuous Riemann-Hilbert problem and some kinds of modified well-posed-nes...In this article, we first introduce the general linear elliptic complex equation of first order with certain conditions, and then propose discontinuous Riemann-Hilbert problem and some kinds of modified well-posed-ness for the complex equation. Then we verify the equivalence of three kinds of well-posed-ness. The discontinuous boundary value problem possesses many applications in mechanics and physics etc.展开更多
Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with ...Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this a...Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this article, we discuss approximate solutions to discontinuous Riemann-Hilbert boundary value problems, which have various applications in mechanics and physics. We first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order complex equations in multiply connected domains and its modified well-posedness, then use the parameter extensional method to find approximate solutions to the modified boundary value problem for elliptic complex systems of first order equations, and then provide the error estimate of approximate solutions for the discontinuous boundary value problem.展开更多
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination ...This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.展开更多
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape...The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.展开更多
基金This research was supported by Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073387)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1A09082919)this research was supported by Institute for Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2018-0-01456,AutoMaTa:Autonomous Management framework based on artificial intelligent Technology for adaptive and disposable IoT).Any correspondence related to this paper should be addressed to Dohyeun Kim.
文摘Smart cities have different contradicting goals having no apparent solution.The selection of the appropriate solution,which is considered the best compromise among the candidates,is known as complex problem-solving.Smart city administrators face different problems of complex nature,such as optimal energy trading in microgrids and optimal comfort index in smart homes,to mention a few.This paper proposes a novel architecture to offer complex problem solutions as a service(CPSaaS)based on predictive model optimization and optimal task orchestration to offer solutions to different problems in a smart city.Predictive model optimization uses a machine learning module and optimization objective to compute the given problem’s solutions.The task orchestration module helps decompose the complex problem in small tasks and deploy them on real-world physical sensors and actuators.The proposed architecture is hierarchical and modular,making it robust against faults and easy to maintain.The proposed architecture’s evaluation results highlight its strengths in fault tolerance,accuracy,and processing speed.
文摘The objective is to study changes in EEG time-domain Kolmogorov entropy and cortical lateralization of brain function areas during complex problem solving mental task in healthy human subjects. EEG data for healthy subjects are acquired during complex problem solving mental task using a net of 6 electrodes. The subject was given a nontrivial multiplication problem to solve and the signals were recorded for 10s during the task. Kolmogorov entropy values during the task were calculated. It was found that Kolmogorov entropy values were obviously greater in P4 channel (right) than ones in P3 channel (left) during complex problem solving task. It indicated that all subjects presented significant left parietal lateralization for the total frequency spectrum. These results suggest that it may be possible to noninvasively lateralize, and even eventually localize, cerebral regions essential for particular mental tasks from scalp EEG data.
文摘In this paper, the naturally evolving complex systems, such as biotic and social ones, are considered. Focusing on their structures, a feature is noteworthy, i.e., the similarity in structures. The relations between the functions and behaviors of these systems and their similar structures will be studied. Owing to the management of social systems and the course of evolution of biotic systems may be regarded as control processes, the researches will be within the scope of control problems. Moreover, since it is difficult to model for biotic and social systems, it will start with the control problems of complex systems, possessing similar structures, in engineering. The obtained results show that for either linear or nonlinear systems and for a lot of control problems similar structures lead to a series of simplifications. In general, the original system may be decomposed into reduced amount of subsystems with lower dimensions and simpler structures. By virtue of such subsystems, the control problems of original system can be solved more simply. At last, it turns round to observe the biotic and social systems and some analyses are given.
文摘In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.
基金Supported by the National Natural Science Foundation of China (10971224)
文摘This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and uniqueness of solutions for such boundary value problem. Then by using the methods of successive iteration and parameter extension, the existence of solutions for this problem is proved.
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
文摘The present paper deals with the average case complexity of the shift—invariant problem. The main aim is to give a new proof of the upper bound of average error of finite element method. Our method is based on the techniques proposed by Heinrich (1990). We also point out an essential error regarding the proof of the upper bound in A. G. Werschulz (1991).
文摘In this article,we discuss that an oblique derivative boundary value problem for nonlinear uniformly elliptic complex equation of second order with the boundary conditions in a multiply connected unbounded domain D.The above boundary value problem will be called Problem P.Under certain conditions,by using the priori estimates of solutions and Leray-Schauder fixed point theorem,we can obtain some results of the solvability for the above boundary value problem(0.1) and(0.2).
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
文摘In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a multiply connected unbounded domain D, the above boundary value problem will be called Problem A. If the complex Equation (0.1) satisfies the conditions similar to Condition C of (1.1), and the boundary condition (0.2) satisfies the conditions similar to (1.5), then we can obtain approximate solutions of the boundary value problems (0.1) and (0.2). Moreover the error estimates of approximate solutions for the boundary value problem is also given. The boundary value problem possesses many applications in mechanics and physics etc., for instance from (5.114) and (5.115), Chapter VI, [1], we see that Problem A of (0.1) possesses the important application to the shell and elasticity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
文摘In this article, we first introduce the general linear elliptic complex equation of first order with certain conditions, and then propose discontinuous Riemann-Hilbert problem and some kinds of modified well-posed-ness for the complex equation. Then we verify the equivalence of three kinds of well-posed-ness. The discontinuous boundary value problem possesses many applications in mechanics and physics etc.
基金This paper is supported by High-Tech Research and Development Program of China (Grant No. 2003AA001048) Young Teacher Foundation of School of Electronics and Information Engineering of Xi'an Jiaotong Univeristy.
文摘Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
文摘Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this article, we discuss approximate solutions to discontinuous Riemann-Hilbert boundary value problems, which have various applications in mechanics and physics. We first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order complex equations in multiply connected domains and its modified well-posedness, then use the parameter extensional method to find approximate solutions to the modified boundary value problem for elliptic complex systems of first order equations, and then provide the error estimate of approximate solutions for the discontinuous boundary value problem.
基金Project supported by the National Natural Science Foundation of China(Nos.1120115911426102+4 种基金and 11571293)the Natural Science Foundation of Hunan Province(No.11JJ3135)the Foundation for Outstanding Young Teachers in Higher Education of Guangdong Province(No.Yq2013054)the Pearl River S&T Nova Program of Guangzhou(No.2013J2200063)the Construct Program of the Key Discipline in Hunan University of Science and Engineering
文摘This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.
基金supported by the National Natural Science Foundation of China (Grant No. 11171208)the Leading Academic Discipline Project of Shanghai City,China (Grant No. S30106)
文摘The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.