Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating t...Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future.展开更多
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
文摘Because of the developed economy and lush vegetation in southern China, the following obstacles or difficulties exist in remote sensing land surface classification: 1) Diverse surface composition types;2) Undulating terrains;3) Small fragmented land;4) Indistinguishable shadows of surface objects. It is our top priority to clarify how to use the concept of big data (Data mining technology) and various new technologies and methods to make complex surface remote sensing information extraction technology develop in the direction of automation, refinement and intelligence. In order to achieve the above research objectives, the paper takes the Gaofen-2 satellite data produced in China as the data source, and takes the complex surface remote sensing information extraction technology as the research object, and intelligently analyzes the remote sensing information of complex surface on the basis of completing the data collection and preprocessing. The specific extraction methods are as follows: 1) extraction research on fractal texture features of Brownian motion;2) extraction research on color features;3) extraction research on vegetation index;4) research on vectors and corresponding classification. In this paper, fractal texture features, color features, vegetation features and spectral features of remote sensing images are combined to form a combination feature vector, which improves the dimension of features, and the feature vector improves the difference of remote sensing features, and it is more conducive to the classification of remote sensing features, and thus it improves the classification accuracy of remote sensing images. It is suitable for remote sensing information extraction of complex surface in southern China. This method can be extended to complex surface area in the future.