期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effect of intermediate principal stress on strength of soft rock under complex stress states 被引量:1
1
作者 马宗源 廖红建 党发宁 《Journal of Central South University》 SCIE EI CAS 2014年第4期1583-1593,共11页
A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/s... A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account. 展开更多
关键词 soft rock strength strain-softening complex stress state effect of intermediate principal stress
下载PDF
Stochastic fatigue damage model for concrete under complex stress states
2
作者 WANG YanPeng LI Jie 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2641-2648,共8页
This paper presents a stochastic fatigue damage model for concrete subjected to complex stress states.A constitutive framework considering the tensile and shear damage mechanisms and elastic and plastic energy dissipa... This paper presents a stochastic fatigue damage model for concrete subjected to complex stress states.A constitutive framework considering the tensile and shear damage mechanisms and elastic and plastic energy dissipations is employed.The damage law is established through a multiscale analysis of the damage evolution mechanism.Validation results against test data show that the model can effectively predict the static strength,stress-strain curve,fatigue life,and scattering range of concrete under various multidimensional loading scenarios. 展开更多
关键词 CONCRETE FATIGUE stochastic damageevolution complex stress states multiscale
原文传递
Modeling time-dependent mechanical behavior of hard rock considering excavation-induced damage and complex 3D stress states
3
作者 Peiyang Yu Xiuli Ding +3 位作者 Peng-Zhi Pan Shuting Miao Zhaofeng Wang Shuling Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第10期4046-4065,共20页
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon... To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. 展开更多
关键词 Hard rock Excavation damage complex stress state Three-dimensional(3D)time-dependent model
下载PDF
Cyclic Shearing Deformation Behavior of Saturated Clays 被引量:2
4
作者 QI Jianfeng LUAN Maotian +2 位作者 FENG Xiuli MA Tailei NIE Ying 《Journal of Ocean University of China》 SCIE CAS 2007年第4期413-420,共8页
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests und... The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used. 展开更多
关键词 cyclic stress complex stress state saturated clay stress-strain relations failure criterion
下载PDF
Dynamic constitutive model for soils considering asymmetry of skeleton curve
5
作者 Guoxing Chen Hua Pan +1 位作者 Hui Long Xiaojun Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第5期400-405,共6页
Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils,a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils.The hysteresis loo... Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils,a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils.The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote.The coeffcient of initial unloading modulus is used to ensure that the constructed hysteresis loop fts well with the experimental data.Then,a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated.The verifcation tests on saturated Nanjing fne sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model.It is found that the predicted curves by the UD model agree well with the test data. 展开更多
关键词 Function with double asymptotes Dynamic constitutive model Shear modulus Damping ratio complex initial stress state
下载PDF
Study on triaxial test method and failure criterion of asphalt mixture 被引量:10
6
作者 Jianlong Zheng Tuo Huang 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第2期93-106,共14页
Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationalit... Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional com- plex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, ac- cording to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state. 展开更多
关键词 Asphalt mixture Triaxial test method complex stress state Failure mode Failure criterion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部