Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, ami...Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, amino acid, micro structure and their properties of raw edible fungus and the edible fungus powders obtained with the two methods were analyzed and compared. The granularity size and micro-structure of the pulverized samples were analyzed by SEM and TEM technology. The average granularity size of the edible fungus powder obtained with mechanical method was 1–5 μm, while that obtained with mechanical method combined with vacuum freeze-drying process was 0.5–1 μm. The ultra-fine powders of edible fungus obtained with the two methods had better water recovery capability and quality, and their preserving time was longer than that of raw edible fungus. All the properties of the ultra-fine powders of edible fungus obtained with the vacuum freeze-drying technology were evidently superior to that of the conventional mechanical method. Keywords Auricularia auricula - Edible fungus - Ultra-fine powders - Vacuum freeze-drying CLC number TS205 Document code B Biography: YANG Chun-yu (1975), female, Ph. D. in Engineering Technology Center of Forestry and Wood Workine, Machinery, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong展开更多
Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted...Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).展开更多
Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on ...Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.展开更多
This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. ...This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder.展开更多
The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium ...The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium hydroxide(NaOH),were converted into chromic oxide through hydrolysis followed by calcination.The obtained chromic oxide product was characterized by powder X-ray diffraction(XRD) and SEM.The results show that the hydrolysis process of sodium chromite is the key step and lower reduction temperature helps intensify the hydrolysis process.展开更多
In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, ...In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.展开更多
The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol....The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol.The effects of sulphuric acid concentration, reaction temperature, stirring rate, and reaction time onthesize of the particle were investigated. A binary mixture composed of lactose and SS was prepared to evaluate SS. The results showed that ultra-fine SS particles with controlled diameters ranging between 3 μm and 0.8 μm and with a narrow distribution could be achieved. The morphology consisting of clubbed particles wassuccess.fully obtained. The purity of the particles reached above 98% with-UV detection. The dose- of dry powder inhalation was obtained by blending the particles with recrystallized lactose, which acted as a carrier. The deposition quantity of the drug in breathing tract was estimated using a twin imPinger apparatus. Compared with the Shapuer powder (purchased in the market), the results showed that SS_particles had more quantifies.subsided in simulative lung.. _展开更多
Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the cryst...Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.展开更多
In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus wit...In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.展开更多
Fine nickel(Ni) powders with controllable particle sizes were synthesized via the reduction of nickel hydrazine complex precursors of pure [Ni(N2H4)2]Cl2 and a mixture of [Ni(N2H4)2]Cl2 and [Ni(N2H4)3]Cl2 in aqueous s...Fine nickel(Ni) powders with controllable particle sizes were synthesized via the reduction of nickel hydrazine complex precursors of pure [Ni(N2H4)2]Cl2 and a mixture of [Ni(N2H4)2]Cl2 and [Ni(N2H4)3]Cl2 in aqueous solution. The mechanism of the formation of metallic Ni powders experiences the reduction of nickel hydroxide by hydrazine released from the ligand exchange reaction between nickel hydrazine complex and NaOH. In comparison with the method of preparing Ni powders from nickel salts,the method of making Ni powders via the reduction of nickel hydrazine complex precursors shows the advantages of using half dosage of hydrazine for complete reduction of nickel ions in solution,and the obtained Ni particles show less agglomeration and better dispersibility. Moreover,the average particle size of nickel powders can be controlled from 180 to 260 nm by adjusting the reaction molar ratio and concentration.展开更多
Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4....Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.展开更多
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental...To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.展开更多
Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The produc...Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.展开更多
High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of...High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .展开更多
The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions h...The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable. The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy, using the effect of boranes with various structures, have been selected.展开更多
Many metal complexes of Schiff base derived from different amino acids are widely employed as biologically active materials, especially as antibacterial agents. Three new metal [Co(III), Mn(II) and La(III)] complexes ...Many metal complexes of Schiff base derived from different amino acids are widely employed as biologically active materials, especially as antibacterial agents. Three new metal [Co(III), Mn(II) and La(III)] complexes with the Schiff base (L) derived from salicylaldehyde and amino acid (methionine) were synthesized and investigated by using various physico-chemical techniques such as elemental analysis, FTIR, UV-visible spectroscopy, magnetic measurement, thermo gravimetric analysis (TGA) and X-ray powder diffraction (XRD) method. From spectral studies, it has been concluded that the synthesized ligand acts as a tetra-dentate molecule, coordinates metal through azomethine nitrogen, sulfur, phenolic oxygen and carboxylate oxygen. UV-visible spectrophotometry showed the characteristic absorption bands corresponding to a square planar geometry for La(III) and Mn(II) metal complexes and tetrahedral geometry for Co(III) complex. The XRD data demonstrated that the manganese and cobalt complexes were crystalline but the lanthanum complex was amorphous in nature. The empirical formula of the synthesized complexes based on analytical data were [Co(C12H13SNO3)]·(NO3), [La(C12H13SNO3)](Cl)(H2O) and [Mn (C12H13SNO3)].展开更多
The new salt bis(4,5-dihydro-1H-benzo[g]indazole)silver(I) hexafluorophosphate, [Ag(N2H10C11)2]PF6, has been synthesized in methanol at ambient temperature and characterized by elemental and thermal analyses, FTIR and...The new salt bis(4,5-dihydro-1H-benzo[g]indazole)silver(I) hexafluorophosphate, [Ag(N2H10C11)2]PF6, has been synthesized in methanol at ambient temperature and characterized by elemental and thermal analyses, FTIR and 1HNMR spectroscopies, Rietveld refinement from powder diffraction data and DFT studies. The salt crystallizes in the triclinic space group P-1 with the parameters: a = 7.776 ?, b = 8.676 ?, c = 9.226 ?, α = 69.27° β = 89.86°, γ = 74.50°, V = 558.02 ?3, Z = 1. In the structure, the silver center is coordinated to two nitrogen atoms from two 4,5-dihydro-1H-benzo[g]indazole ligands, forming a centrosymmetric complex cation, [Ag(N2H10C11)2]+, with a linear coordination geometry around the silver center. The hexafluorophosphate ion, , acts as counter anion. The crystal packing is governed by N-H···F and C-H···F hydrogen bonds that interconnect the ionic constituents and Ag···F and Ag···π interactions help for the stabilization of the packing. The optimized structure was obtained at B3LYP/LanL2DZ level in the gas phase. The stability and reactivity of the structure were studied using respectively HOMO-LUMO gap and electronic global quantities (ionization potential (I) and electron affinity (A)) as descriptors.展开更多
Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appro...Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appropriate stoichiometry was determined from the mixtures of precisely titrated aqueous solutions of cations chlorides (SrCl2, BaCl2, and TiCl4). The reason of this process was to apply low sintering temperature in production of BST samples with ultra-fine powders. These powders primarily calcined at (850°C) for (5 hr) were used to elaborate ceramics after pellets sintering at (1200°C) during (8 hrs). Indeed, XRD patterns were confirmed that the samples are a pure phase and a perovskite cubic structural type at (x = 0, 0.5, 0.6). Whereas, (x = 0.7, 0.8, 0.9, 1) showed a tetragonal phase. There is agreement between the FTIR and XRD analysis, by the relation of the wave vector (K) and lattice constant. It was deduced a stimulated relation between (x) and (K). The results of TEM, they were clear that the lowest particle sizes investigated of BST powders nearly (36 - 50 nm).展开更多
Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered...Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered parts were studied. Binder removal was accomplished by heating green compacts at intermediate temperatures with optimal heating rates until the debinding temperature was reached. Results show that by controlling debinding process,complex parts with good shape consistence can be obtained by warm compaction of binder-treated powder. Fine and shiny surface was obtained and no surface defect can be observed for sintered parts debinded at 2 ℃/min,while defect can be observed in sintered parts debinded at 4 ℃/min.展开更多
文摘Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, amino acid, micro structure and their properties of raw edible fungus and the edible fungus powders obtained with the two methods were analyzed and compared. The granularity size and micro-structure of the pulverized samples were analyzed by SEM and TEM technology. The average granularity size of the edible fungus powder obtained with mechanical method was 1–5 μm, while that obtained with mechanical method combined with vacuum freeze-drying process was 0.5–1 μm. The ultra-fine powders of edible fungus obtained with the two methods had better water recovery capability and quality, and their preserving time was longer than that of raw edible fungus. All the properties of the ultra-fine powders of edible fungus obtained with the vacuum freeze-drying technology were evidently superior to that of the conventional mechanical method. Keywords Auricularia auricula - Edible fungus - Ultra-fine powders - Vacuum freeze-drying CLC number TS205 Document code B Biography: YANG Chun-yu (1975), female, Ph. D. in Engineering Technology Center of Forestry and Wood Workine, Machinery, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong
基金Project supported by the National Natural Science Foundation of China (50474022 and 50574069 )
文摘Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).
基金This work was supported by the National Science Fund for Distinguished Young Scholars of China (No.50125312) andSpecial Funds for Major State Basic Research Projects (No.G1999064800).
文摘Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.
基金The subject is supported by National Natural Science Fundof China: 50575085.
文摘This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder.
基金Funded by the Key Program Project of the National Natural Science Foundation of China (No.50234040)the Major Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KCCX1-SW-22)
文摘The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium hydroxide(NaOH),were converted into chromic oxide through hydrolysis followed by calcination.The obtained chromic oxide product was characterized by powder X-ray diffraction(XRD) and SEM.The results show that the hydrolysis process of sodium chromite is the key step and lower reduction temperature helps intensify the hydrolysis process.
基金financially supported by the National Natural Science Foundation of China(grant no.51204028)
文摘In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.
基金Supported by the National High Technology Research and Development Program of China (2001AA218061) and the National Natural Science Foundation of China (20236020).
文摘The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol.The effects of sulphuric acid concentration, reaction temperature, stirring rate, and reaction time onthesize of the particle were investigated. A binary mixture composed of lactose and SS was prepared to evaluate SS. The results showed that ultra-fine SS particles with controlled diameters ranging between 3 μm and 0.8 μm and with a narrow distribution could be achieved. The morphology consisting of clubbed particles wassuccess.fully obtained. The purity of the particles reached above 98% with-UV detection. The dose- of dry powder inhalation was obtained by blending the particles with recrystallized lactose, which acted as a carrier. The deposition quantity of the drug in breathing tract was estimated using a twin imPinger apparatus. Compared with the Shapuer powder (purchased in the market), the results showed that SS_particles had more quantifies.subsided in simulative lung.. _
文摘Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.
文摘In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.
基金Projects(50674060, 50734005, 20601016) supported by the National Natural Science Foundation of ChinaProjects(2007CB613506, 2007CB613505) supported by the National Basic Research Program of China
文摘Fine nickel(Ni) powders with controllable particle sizes were synthesized via the reduction of nickel hydrazine complex precursors of pure [Ni(N2H4)2]Cl2 and a mixture of [Ni(N2H4)2]Cl2 and [Ni(N2H4)3]Cl2 in aqueous solution. The mechanism of the formation of metallic Ni powders experiences the reduction of nickel hydroxide by hydrazine released from the ligand exchange reaction between nickel hydrazine complex and NaOH. In comparison with the method of preparing Ni powders from nickel salts,the method of making Ni powders via the reduction of nickel hydrazine complex precursors shows the advantages of using half dosage of hydrazine for complete reduction of nickel ions in solution,and the obtained Ni particles show less agglomeration and better dispersibility. Moreover,the average particle size of nickel powders can be controlled from 180 to 260 nm by adjusting the reaction molar ratio and concentration.
基金supported in part by the National Centre of Analysis and Testing for Nonferrous Metal & Electronic Material for Elementary Analysis, Beijing, China
文摘Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.
基金Funded by the Guide Project in National Science & Technology Pillar Program during the 10th Five-Year Plan Period (2003BA652C)
文摘To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.
文摘Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.
文摘High purity Y_2O_3 nano-powders was synthesized directly from solution ofindustrial YCl_3 by method of oxalate precipitation through super-micro-reactors made by complexnon-ionic surfactant. The purity and diameter of Y_2O_3 particles were controlled by such processingparameters as concentration of YCl_3 and oxalic acid and complex non-ionic surfactant etc. TEMphotomicrographs show that Y_2O_3 particles are spherical in shape, with an average diameter of lessthan 30 nm. Test results certify that the purity and particle diameter as well as the dispersion ofY_2O_3 nano-powder depend on the concentrations of YCl_3, oxalic acid and complex non-ionicsurfactant. The optimum ranges of the concentrations for YCl_3 and complex non-ionic surfactant whenthe diameter of Y_2O_3 particles is smaller than 100 nm are 0.43 ~1.4 mol ? L^(-1) and0.031~0.112 mol·L^(-1) respectively, while the mass fraction range of oxalic acid is 10% ~18% .The purity of Y_2O_3 nano-powder tested by ICP-AES analysis is 99.99% .
文摘The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable. The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy, using the effect of boranes with various structures, have been selected.
文摘Many metal complexes of Schiff base derived from different amino acids are widely employed as biologically active materials, especially as antibacterial agents. Three new metal [Co(III), Mn(II) and La(III)] complexes with the Schiff base (L) derived from salicylaldehyde and amino acid (methionine) were synthesized and investigated by using various physico-chemical techniques such as elemental analysis, FTIR, UV-visible spectroscopy, magnetic measurement, thermo gravimetric analysis (TGA) and X-ray powder diffraction (XRD) method. From spectral studies, it has been concluded that the synthesized ligand acts as a tetra-dentate molecule, coordinates metal through azomethine nitrogen, sulfur, phenolic oxygen and carboxylate oxygen. UV-visible spectrophotometry showed the characteristic absorption bands corresponding to a square planar geometry for La(III) and Mn(II) metal complexes and tetrahedral geometry for Co(III) complex. The XRD data demonstrated that the manganese and cobalt complexes were crystalline but the lanthanum complex was amorphous in nature. The empirical formula of the synthesized complexes based on analytical data were [Co(C12H13SNO3)]·(NO3), [La(C12H13SNO3)](Cl)(H2O) and [Mn (C12H13SNO3)].
文摘The new salt bis(4,5-dihydro-1H-benzo[g]indazole)silver(I) hexafluorophosphate, [Ag(N2H10C11)2]PF6, has been synthesized in methanol at ambient temperature and characterized by elemental and thermal analyses, FTIR and 1HNMR spectroscopies, Rietveld refinement from powder diffraction data and DFT studies. The salt crystallizes in the triclinic space group P-1 with the parameters: a = 7.776 ?, b = 8.676 ?, c = 9.226 ?, α = 69.27° β = 89.86°, γ = 74.50°, V = 558.02 ?3, Z = 1. In the structure, the silver center is coordinated to two nitrogen atoms from two 4,5-dihydro-1H-benzo[g]indazole ligands, forming a centrosymmetric complex cation, [Ag(N2H10C11)2]+, with a linear coordination geometry around the silver center. The hexafluorophosphate ion, , acts as counter anion. The crystal packing is governed by N-H···F and C-H···F hydrogen bonds that interconnect the ionic constituents and Ag···F and Ag···π interactions help for the stabilization of the packing. The optimized structure was obtained at B3LYP/LanL2DZ level in the gas phase. The stability and reactivity of the structure were studied using respectively HOMO-LUMO gap and electronic global quantities (ionization potential (I) and electron affinity (A)) as descriptors.
文摘Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appropriate stoichiometry was determined from the mixtures of precisely titrated aqueous solutions of cations chlorides (SrCl2, BaCl2, and TiCl4). The reason of this process was to apply low sintering temperature in production of BST samples with ultra-fine powders. These powders primarily calcined at (850°C) for (5 hr) were used to elaborate ceramics after pellets sintering at (1200°C) during (8 hrs). Indeed, XRD patterns were confirmed that the samples are a pure phase and a perovskite cubic structural type at (x = 0, 0.5, 0.6). Whereas, (x = 0.7, 0.8, 0.9, 1) showed a tetragonal phase. There is agreement between the FTIR and XRD analysis, by the relation of the wave vector (K) and lattice constant. It was deduced a stimulated relation between (x) and (K). The results of TEM, they were clear that the lowest particle sizes investigated of BST powders nearly (36 - 50 nm).
基金Projects(50574041, 50325516) supported by the National Natural Science Foundation of Chinaprojects(2006Z1-D6081, 06105411) supported by Guangdong Science and Technologyproject (NCET-05-0739) supported by NCET
文摘Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered parts were studied. Binder removal was accomplished by heating green compacts at intermediate temperatures with optimal heating rates until the debinding temperature was reached. Results show that by controlling debinding process,complex parts with good shape consistence can be obtained by warm compaction of binder-treated powder. Fine and shiny surface was obtained and no surface defect can be observed for sintered parts debinded at 2 ℃/min,while defect can be observed in sintered parts debinded at 4 ℃/min.