期刊文献+
共找到409篇文章
< 1 2 21 >
每页显示 20 50 100
A new complex variable meshless method for transient heat conduction problems 被引量:5
1
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
2
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
下载PDF
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 被引量:3
3
作者 Bai Fu-Nong Li Dong-Ming +1 位作者 Wang Jian-Fei Cheng Yu-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期56-65,共10页
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar... In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 展开更多
关键词 meshless method improved complex variable moving least-squares approximation improved complex variable element-free Galerkin method ELASTICITY
下载PDF
Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 被引量:3
4
作者 程玉民 刘超 +1 位作者 白福浓 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期16-25,共10页
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c... In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods. 展开更多
关键词 meshless method complex variable moving least-squares approximation improved complex vari- able element-free Galerkin method elastoplasticity
下载PDF
The complex variable reproducing kernel particle method for two-dimensional elastodynamics 被引量:2
5
作者 陈丽 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期59-70,共12页
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present... On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM. 展开更多
关键词 meshless method reproducing kernel particle method complex variable reproducing kernel particle method elastodvnamics
下载PDF
Complex variable element-free Galerkin method for viscoelasticity problems 被引量:2
6
作者 程玉民 李荣鑫 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期60-71,共12页
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente... Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method. 展开更多
关键词 meshless method complex variable moving least-square approximation complex variableelement-free Galerkin method VISCOELASTICITY
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
7
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
8
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
下载PDF
New complex variable meshless method for advection-diffusion problems 被引量:1
9
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期92-98,共7页
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi... In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 展开更多
关键词 meshless method improved complex variable moving least-square approximation improved complex variable meshless method advection-diffusion problem
下载PDF
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
10
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
下载PDF
Analysis of variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method
11
作者 翁云杰 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期197-202,共6页
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape... The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method. 展开更多
关键词 meshless method reproducing kernel particle method (RKPM) complex variable reproducingkernel particle method (CVRKPM) advection-diffusion problem
下载PDF
An Unsteady Two-Dimensional Complex Variable Boundary Element Method
12
作者 Bryce D. Wilkins Joshua Greenberg +7 位作者 Brittany Redmond Alan Baily Nicholas Flowerday Adam Kratch Theodore V. Hromadka Randy Boucher Howard D. McInvale Steve Horton 《Applied Mathematics》 2017年第6期878-891,共14页
The Complex Variable Boundary Element Method (CVBEM) procedure is extended to modeling applications of the two-dimensional linear diffusion partial differential equation (PDE) on a rectangular domain. The methodology ... The Complex Variable Boundary Element Method (CVBEM) procedure is extended to modeling applications of the two-dimensional linear diffusion partial differential equation (PDE) on a rectangular domain. The methodology in this work is suitable for modeling diffusion problems with Dirichlet boundary conditions and an initial condition that is equal on the boundary to the boundary conditions. The underpinning of the modeling approach is to decompose the global initial-boundary value problem into a steady-state component and a transient component. The steady-state component is governed by the Laplace PDE and is modeled using the Complex Variable Boundary Element Method. The transient component is governed by the linear diffusion PDE and is modeled by a linear combination of basis functions that are the products of a two-dimensional Fourier sine series and an exponential function. The global approximation function is the sum of the approximate solutions from the two components. The boundary conditions of the steady-state problem are specified to match the boundary conditions from the global problem so that the CVBEM approximation function satisfies the global boundary conditions. Consequently, the boundary conditions of the transient problem are specified to be continuously zero. The initial condition of the transient component is specified as the difference between the initial condition of the global initial-boundary value problem and the CVBEM approximation of the steady-state solution. Therefore, when the approximate solutions from the two components are summed, the resulting global approximation function approximately satisfies the global initial condition. In this work, it will be demonstrated that the coupled global approximation function satisfies the governing diffusion PDE. Lastly, a procedure for developing streamlines at arbitrary model time is discussed. 展开更多
关键词 complex variableS Diffusion EQUATION LAPLACE EQUATION complex variable Boundary Element method (CVBEM) Numerical Techniques for Partial Differential Equations
下载PDF
A Conceptual Numerical Model of the Wave Equation Using the Complex Variable Boundary Element Method
13
作者 Bryce D. Wilkins Theodore V. Hromadka Randy Boucher 《Applied Mathematics》 2017年第5期724-735,共12页
In this work, a conceptual numerical solution of the two-dimensional wave partial differential equation (PDE) is developed by coupling the Complex Variable Boundary Element Method (CVBEM) and a generalized Fourier ser... In this work, a conceptual numerical solution of the two-dimensional wave partial differential equation (PDE) is developed by coupling the Complex Variable Boundary Element Method (CVBEM) and a generalized Fourier series. The technique described in this work is suitable for modeling initial-boundary value problems governed by the wave equation on a rectangular domain with Dirichlet boundary conditions and an initial condition that is equal on the boundary to the boundary conditions. The new numerical scheme is based on the standard approach of decomposing the global initial-boundary value problem into a steady-state component and a time-dependent component. The steady-state component is governed by the Laplace PDE and is modeled with the CVBEM. The time-dependent component is governed by the wave PDE and is modeled using a generalized Fourier series. The approximate global solution is the sum of the CVBEM and generalized Fourier series approximations. The boundary conditions of the steady-state component are specified as the boundary conditions from the global BVP. The boundary conditions of the time-dependent component are specified to be identically zero. The initial condition of the time-dependent component is calculated as the difference between the global initial condition and the CVBEM approximation of the steady-state solution. Additionally, the generalized Fourier series approximation of the time-dependent component is fitted so as to approximately satisfy the derivative of the initial condition. It is shown that the strong formulation of the wave PDE is satisfied by the superposed approximate solutions of the time-dependent and steady-state components. 展开更多
关键词 complex variable Boundary Element method (CVBEM) Partial Differential Equations (PDEs) NUMERICAL Solution Techniques LAPLACE EQUATION Wave EQUATION
下载PDF
A complex variable meshless method for fracture problems 被引量:16
14
作者 CHENG Yumin1 & LI Jiuhong2 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 2. Department of Building Engineering, Xi’an University of Technology, Xi’an 710048, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2006年第1期46-59,共14页
Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-c... Based on the moving least-square (MLS) approximation, the complex variable moving least-square approximation (CVMLS) is discussed in this paper. The complex variable moving least-square approximation cannot form ill-conditioned equations, and has greater precision and computational efficiency. Using the analytical solution near the tip of a crack, the trial functions in the complex variable moving least-square approxi- mation are extended, and the corresponding approximation function is obtained. And from the minimum potential energy principle, a complex variable meshless method for fracture problems is presented, and the formulae of the complex variable meshless method are obtained. The complex variable meshless method in this paper has greater precision and computational efficiency than the conventional meshless method. Some examples are given. 展开更多
关键词 MOVING least-square approximation complex variable MOVING least-square approximation MESHLESS method complex variable MESHLESS method fracture.
原文传递
Complex variable method for plane elasticity of icosahedral quasicrystals and elliptic notch problem 被引量:5
15
作者 LI LianHe1,2 & FAN TianYou1 1 Department of Physics, Beijing Institute of Technology, Beijing 100081, China 2 College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2008年第7期773-780,共8页
The complex variable method for the plane elasticity theory of icosahedral quasicrystals is developed. Based on the general solution obtained previously, complex representations of stress and displacement components o... The complex variable method for the plane elasticity theory of icosahedral quasicrystals is developed. Based on the general solution obtained previously, complex representations of stress and displacement components of phonon and phason fields in the quasicrystals are given. With the help of conformal transformation, an analytic solution for the elliptic notch problem of the material is presented. The solution of the Griffith crack problem can be observed as a special case of the results. The stress intensity factor and energy release rate of the crack are also obtained. 展开更多
关键词 ICOSAHEDRAL QUASICRYSTALS PLANE ELASTICITY ELLIPTIC NOTCH complex variable method
原文传递
The complex variable reproducing kernel particle method for elasto-plasticity problems 被引量:5
16
作者 CHEN Li1 & CHENG YuMin2 1 Department of Engineering Mechanics,Chang’an University,Xi’an 710064,China 2 Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第5期954-965,共12页
On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the... On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis. 展开更多
关键词 MESHLESS method reproducing KERNEL PARTICLE method(RKPM) complex variable reproducing KERNEL PARTICLE method(CVRKPM) CORRECTION function ELASTO-PLASTICITY
原文传递
FRACTURE CALCULATION OF BENDING PLATES BY BOUNDARY COLLOCATION METHOD 被引量:2
17
作者 王元汉 伍佑伦 余飞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第6期684-690,共7页
Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variab... Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method. 展开更多
关键词 Kirchhoff plate FRACTURE boundary collocation method complex variables function stress intensity factors
下载PDF
Line field analysis and complex variable method for solving elastic-plastic fields around an anti-plane elliptic hole 被引量:3
18
作者 GUO JunHong LU ZiXing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1495-1501,共7页
A new approach is proposed to solve the elastic-plastic fields near the major-axis line of an elliptical hole. The complex variable method is used to determine the elastic fields near the major-axis line of the ellipt... A new approach is proposed to solve the elastic-plastic fields near the major-axis line of an elliptical hole. The complex variable method is used to determine the elastic fields near the major-axis line of the elliptical hole. Then, by using the line field analysis method, the exact and new solutions of the stresses, strains in the plastic zone, the size of the plastic region and the unit normal vector of the elastic-plastic boundary near the major-axis line of the elliptical hole are obtained for an anti-plane elliptical hole in a perfectly elastic-plastic solid. The usual small scale yielding assumptions are not adopted in the analysis. The present method is simple, easy and efficient. The influences of applied mechanical loading on the size of plastic zone are discussed. 展开更多
关键词 complex variable method line field analysis method elliptical hole elastic-plastic solid
原文传递
Analytical modeling of complex contact behavior between rock mass and lining structure 被引量:2
19
作者 Dingli Zhang Tong Xu +3 位作者 Huangcheng Fang Qian Fang Liqiang Cao Ming Wen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期813-824,共12页
Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact mode... Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method(FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock-lining interaction. The results show that:(i) the height of the local noncontact area does not have a significant effect on the contact stress distribution if no re-contact occurs;(ii) backfill grouting can reduce the local stress concentration caused by poor contact modes;and(iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining. 展开更多
关键词 Loose contact Local non-contact Tunnel lining complex variable method Analytical mechanical model
下载PDF
Complex Wave Solutions for (2+1)-Dimensional Modified Dispersive Water Wave System 被引量:1
20
作者 LIANG Jin-Fu GONG Lun-Xun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第7期17-22,共6页
The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified... The extended Riccati mapping approach^[1] is further improved by generalized Riccati equation, and combine it with variable separation method, abundant new exact complex solutions for the (2+1)-dimensional modified dispersive water-wave (MDWW) system are obtained. Based on a derived periodic solitary wave solution and a rational solution, we study a type of phenomenon of complex wave. 展开更多
关键词 MDWW system generalized Riccati equation variable separation method complex wave
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部