In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ...On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.展开更多
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape...The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.展开更多
This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collec...This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collected and three failure criteria were studied.Based on the Kirsch equations,relatively accurate major horizontal stress(sH)estimations from known minor horizontal stress(sh)were achieved with percentage errors ranging from 0.33%to 44.08%using the breakout width.The Mogi-Coulomb failure criterion(average error:13.1%)outperformed modified Wiebols-Cook(average error:19.09%)and modified Lade(average error:18.09%)failure criteria.However,none of the tested constitutive models could yield reasonable sh predictions from known sH using the same approach due to the analytical expression of the redistributed stress and the nature of the constitutive models.In consideration of this issue,the horizontal stress ratio(sH/sh)is suggested as an alternative input,which could estimate both sH and sh with the same level of accuracy.Moreover,the estimation accuracies for both large-scale and laboratory-scale breakouts are comparable,suggesting the applicability of this approach across different breakout sizes.For breakout depth,conformal mapping and complex variable method were used to calculate the stress concentration around the breakout tip,allowing the expression of redistributed stresses using binomials composed of sH and sh.Nevertheless,analysis of the breakout depth stabilisation mechanism indicates that additional parameters are required to utilise normalised breakout depth for stress estimation compared to breakout width.These parameters are challenging to obtain,especially under field conditions,meaning utilising normalised breakout depth analytically in practical applications faces significant challenges and remains infeasible at this stage.Nonetheless,the normalised breakout depth should still be considered a critical input for any empirical and statistical stress estimation method given its significant correlation with horizontal stresses.The outcome of this paper is expected to contribute valuable insights into the breakout stabilisation mechanisms and estimation of in situ stress magnitudes based on borehole breakout geometries.展开更多
Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact mode...Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method(FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock-lining interaction. The results show that:(i) the height of the local noncontact area does not have a significant effect on the contact stress distribution if no re-contact occurs;(ii) backfill grouting can reduce the local stress concentration caused by poor contact modes;and(iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
Using the complex variable method and conformal mapping,scat- tering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied.The general solution of the stress...Using the complex variable method and conformal mapping,scat- tering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied.The general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of cutouts is obtained. Applying the orthogonal function expansion technique,the dynamic stress problem can be reduced into the solution of a set of infinite algebraic equations.As examples, numerical results for the dynamic stress concentration factor in Mindlin's plates with a circular,elliptic cutout are graphically presented in sequence.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For th...Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.展开更多
The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex va...The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.展开更多
A particle flow code(PFC) was first applied to examining the mechanical response of a horseshoe-shaped opening in prismatic rock models under biaxial compression. Next, an improved complex variable method was proposed...A particle flow code(PFC) was first applied to examining the mechanical response of a horseshoe-shaped opening in prismatic rock models under biaxial compression. Next, an improved complex variable method was proposed to derive the stress distribution around the opening. Lastly, a case study of tunnel failure caused by rock burst in Jinping Ⅱ Hydropower Station was further analyzed and discussed. The results manifest that a total of four types of cracks occur around the opening under low lateral confining stress, namely, the primary-tensile cracks on the roof-floor, sidewall cracks on the sidewalls, secondary-tensile cracks on the corners and shear cracks along the diagonals. As the confining stress increases, the tensile cracks gradually disappear whilst the spalling failure becomes severe. Overall, the failure phenomenon of the modelled tunnel agrees well with that of the practical headrace tunnel, and the crack initiation mechanisms can be clearly clarified by the analytical stress distribution.展开更多
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-pla...Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.展开更多
A new approach is proposed to solve the elastic-plastic fields near the major-axis line of an elliptical hole. The complex variable method is used to determine the elastic fields near the major-axis line of the ellipt...A new approach is proposed to solve the elastic-plastic fields near the major-axis line of an elliptical hole. The complex variable method is used to determine the elastic fields near the major-axis line of the elliptical hole. Then, by using the line field analysis method, the exact and new solutions of the stresses, strains in the plastic zone, the size of the plastic region and the unit normal vector of the elastic-plastic boundary near the major-axis line of the elliptical hole are obtained for an anti-plane elliptical hole in a perfectly elastic-plastic solid. The usual small scale yielding assumptions are not adopted in the analysis. The present method is simple, easy and efficient. The influences of applied mechanical loading on the size of plastic zone are discussed.展开更多
Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the ...Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.展开更多
The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singu...The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singularity analysis of complex functions, the general solution of the problem and the closed form solutions for some important practical problems were presented. The stress distribution in the immediate vicinity of circular arc rigid line end was examined in detail. The results show that the singular stress fields near the rigid inclusion tip possess a square-root singularity similar to that for the corresponding crack problem under antiplane shear loading, but no oscillatory character. Furthermore, the stresses are found to depend on geometrical dimension, loading conditions and materials parameters. Some practical results concluded are in agreement with the previous solutions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.51078250)the Research Project by Shanxi Scholarship Council of Shanxi Province,China(Grant No.2013-096)the Scientific&Technological Innovation Program for Postgraduates of Taiyuan University of Science and Technology,China(Grant No.20125026)
文摘On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
基金supported by the National Natural Science Foundation of China (Grant No. 11171208)the Leading Academic Discipline Project of Shanghai City,China (Grant No. S30106)
文摘The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.
基金funded by the Australian Coal Industry’s Research Program(ACARP,Grant No.C26063).
文摘This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collected and three failure criteria were studied.Based on the Kirsch equations,relatively accurate major horizontal stress(sH)estimations from known minor horizontal stress(sh)were achieved with percentage errors ranging from 0.33%to 44.08%using the breakout width.The Mogi-Coulomb failure criterion(average error:13.1%)outperformed modified Wiebols-Cook(average error:19.09%)and modified Lade(average error:18.09%)failure criteria.However,none of the tested constitutive models could yield reasonable sh predictions from known sH using the same approach due to the analytical expression of the redistributed stress and the nature of the constitutive models.In consideration of this issue,the horizontal stress ratio(sH/sh)is suggested as an alternative input,which could estimate both sH and sh with the same level of accuracy.Moreover,the estimation accuracies for both large-scale and laboratory-scale breakouts are comparable,suggesting the applicability of this approach across different breakout sizes.For breakout depth,conformal mapping and complex variable method were used to calculate the stress concentration around the breakout tip,allowing the expression of redistributed stresses using binomials composed of sH and sh.Nevertheless,analysis of the breakout depth stabilisation mechanism indicates that additional parameters are required to utilise normalised breakout depth for stress estimation compared to breakout width.These parameters are challenging to obtain,especially under field conditions,meaning utilising normalised breakout depth analytically in practical applications faces significant challenges and remains infeasible at this stage.Nonetheless,the normalised breakout depth should still be considered a critical input for any empirical and statistical stress estimation method given its significant correlation with horizontal stresses.The outcome of this paper is expected to contribute valuable insights into the breakout stabilisation mechanisms and estimation of in situ stress magnitudes based on borehole breakout geometries.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51738002 and 52108376)Fundamental Research Funds for the Central Universities (Grant No. 2021CZ111)
文摘Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method(FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock-lining interaction. The results show that:(i) the height of the local noncontact area does not have a significant effect on the contact stress distribution if no re-contact occurs;(ii) backfill grouting can reduce the local stress concentration caused by poor contact modes;and(iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.
基金The project supported by the National Natural Science Foundation of China
文摘Using the complex variable method and conformal mapping,scat- tering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied.The general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of cutouts is obtained. Applying the orthogonal function expansion technique,the dynamic stress problem can be reduced into the solution of a set of infinite algebraic equations.As examples, numerical results for the dynamic stress concentration factor in Mindlin's plates with a circular,elliptic cutout are graphically presented in sequence.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金supported by the National Natural Science Foundation of China(Nos.11362018,11261045,and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.
基金The project supported by the National Natural Science Foundation of China(10272009 and 10472030)the Natural Science Foundation of Hunan Province(02JJY2014)
文摘The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.
基金the Fundamental Research Funds for the Central Universities,China(No.2021QN1010).
文摘A particle flow code(PFC) was first applied to examining the mechanical response of a horseshoe-shaped opening in prismatic rock models under biaxial compression. Next, an improved complex variable method was proposed to derive the stress distribution around the opening. Lastly, a case study of tunnel failure caused by rock burst in Jinping Ⅱ Hydropower Station was further analyzed and discussed. The results manifest that a total of four types of cracks occur around the opening under low lateral confining stress, namely, the primary-tensile cracks on the roof-floor, sidewall cracks on the sidewalls, secondary-tensile cracks on the corners and shear cracks along the diagonals. As the confining stress increases, the tensile cracks gradually disappear whilst the spalling failure becomes severe. Overall, the failure phenomenon of the modelled tunnel agrees well with that of the practical headrace tunnel, and the crack initiation mechanisms can be clearly clarified by the analytical stress distribution.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10932001 and 11072015)the Scientific Research Key Program of Beijing Municipal Commission of Education (Grant No. KZ201010005003)the PhD Innovative Foundation of Beihang University (Grant No. 300351)
文摘A new approach is proposed to solve the elastic-plastic fields near the major-axis line of an elliptical hole. The complex variable method is used to determine the elastic fields near the major-axis line of the elliptical hole. Then, by using the line field analysis method, the exact and new solutions of the stresses, strains in the plastic zone, the size of the plastic region and the unit normal vector of the elastic-plastic boundary near the major-axis line of the elliptical hole are obtained for an anti-plane elliptical hole in a perfectly elastic-plastic solid. The usual small scale yielding assumptions are not adopted in the analysis. The present method is simple, easy and efficient. The influences of applied mechanical loading on the size of plastic zone are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)
文摘Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.
文摘The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using Riemann-Schwarz's symmetry principle integrated with the singularity analysis of complex functions, the general solution of the problem and the closed form solutions for some important practical problems were presented. The stress distribution in the immediate vicinity of circular arc rigid line end was examined in detail. The results show that the singular stress fields near the rigid inclusion tip possess a square-root singularity similar to that for the corresponding crack problem under antiplane shear loading, but no oscillatory character. Furthermore, the stresses are found to depend on geometrical dimension, loading conditions and materials parameters. Some practical results concluded are in agreement with the previous solutions.