The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated...The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.展开更多
Introduction: During postmastectomy radiotherapy (PMRT), it is recommended to boost the postmastectomy surgical scar with additional 10 Gy in 5 fractions in the patients with close or positive surgical margins. The el...Introduction: During postmastectomy radiotherapy (PMRT), it is recommended to boost the postmastectomy surgical scar with additional 10 Gy in 5 fractions in the patients with close or positive surgical margins. The electron beam therapy, though cumbersome, is usually preferred since it has the desired rapid fall of a dose beyond R85. An alternative but easier and reproducible treatment method for PMRT surgical scar boost using 3D CT image-based HDR surface mould brachytherapy is introduced and analyses of the target coverage and dose nearby organs-at-risk (OARs) using this method are evaluated in this study. Methods and Materials: This study includes twelve patients (five left-sided and seven right-sided chest wall), who were planned and treated with CT-image based surface mould HDR brachytherapy for chest wall scar boost (CWB) using Catheter Flap SetTM (Varian Medical Systems, USA) that were given concurrently during external beam radiotherapy (EBRT) treatments. Since no guidelines are available for delineating clinical target volume (CTV) structure to be used for postmastectomy scar boost, the CTV in this study was a uniform 5-mm thick volume drawn at 5 mm beneath the skin (CTVhdr_evl) and its extent was made conforming to the boost area marked on the skin and made visible in CT images by radiopaque wires. Results: Prescribed dose (PD) to CTVhdr_evl is 7.5 Gy in 3 fractions, and 2.5 Gy per fraction. The CTVhdr_evl volume receives the PD with mean V100%, V98% and V95% values which are 98.57%, 99.63% and 100% respectively. The mean dose for heart (MHD) is 2.71 Gy in left-sided CWB and 1.80 Gy in right-sided CWB plans. Mean lung dose (MLD) is 2.48 Gy for ipsilateral lung and 0.76 Gy for contralateral lung. Maximum dose to contralateral breast is 4.93 Gy and the mean dose is 0.79 Gy. The mean percent dose to the skin volume overlying the CTVhdr_evl is 138.6% and 3.7% of skin volume received 200% of the PD. Conclusion: The 3D image-based HDR surface mould achieved good CTV coverage with acceptable doses to OARs. Patient preparation, treatment planning, and execution in this method are less cumbersome and reproducible. Thus surface mould using flap applicator can be used whenever postmastectomy surgical scar boost is required.展开更多
On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is ...On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face temperature of mold insert was increased from 0.3 ℃ to 59.7 ℃ for chi lled air. For the similar grinding conditions with the coolant fluid an increase from 0.9 ℃ to 14.4 ℃ was recorded. With increase of specific material removal rate from 0.15 to 0.65 mm 3/mm.s, F t/F n ratio was increased from (0.2 to 0.4), (0.6 to 1.67) for wet coolant and chilled air respectively. Despite of high F t/F n ratio and ground surface temperature, chilled air method has shown a surface waviness, W t from (2 to 5.6) μm. Microstructure examination of chilled air produced ground surface was comparable to those of using coolant fluids. Surface finish, R a of (0.45~0.7) μm was achieved for mold insert . This work will enable to have clear understanding about the quantitative influe nce of chilled air as well as the clamping method against the surface waviness o f thin mold insert.展开更多
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf...During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.展开更多
Ultra-precision diamond machining with piezoelectric-assisted fast tool servo (FTS) was used to produce various free-form surfaces.A low cost,rapid and large area fabrication of uniform hydrophobic surface at room tem...Ultra-precision diamond machining with piezoelectric-assisted fast tool servo (FTS) was used to produce various free-form surfaces.A low cost,rapid and large area fabrication of uniform hydrophobic surface at room temperature which transfers the FTS fabricated sinusoidal grid surface to the flat film with UV-moulding process was described.A piezoelectric-assisted FTS with high band width of 2 kHz,travel range up to 16 μm and the compact mechanism structure was designed for the sinusoidal grid surface machining and the dynamic performance testing of FTS was described in detail.Machining results indicate that the dimensions of sinusoidal grid change with the variation of the FTS machining condition.Wetting properties of UV-moulded surface were evaluated,the best contact angle was measured to be 120.5° on the sinusoidal grid surface with profile wavelength of 350 μm and peak-to-valley amplitude of about 16 μm.展开更多
The relative performance of coatings for furan resin sand moulds [P-toluol sulphonic acid(PTSA) as hardener] [FRS-PTSA moulds], was compared by analyzing the surface layer for degenerated graphite in Mg treated iron w...The relative performance of coatings for furan resin sand moulds [P-toluol sulphonic acid(PTSA) as hardener] [FRS-PTSA moulds], was compared by analyzing the surface layer for degenerated graphite in Mg treated iron with 0.020 wt.% to 0.054 wt.% Mgres. It was found that the iron nodularising potential(Mg, Ce, La content) and whether the mould coatings contained S, or were capable of desulphurizing were important factors. These moulds have S in the PTSA binder, which aggravates graphite degeneration in the surface layer, depending strongly on the Mgres with lower Mgres increasing the layer thickness. The application of a mould coating strongly influenced graphite deterioration in the surface layer of castings. It either promoted graphite degeneration to less compact morphologies when using S-bearing coatings, or conversely, limited the surface layer thickness using desulphurization type coatings. Independently of the S-source at the metal – mould interface, the presence of sulphur had an adverse effect on graphite quality at the surface of Mg-treated irons, but its negative effect could also reach the graphite phase within the casting section. If the coatings employed desulphurization materials, such as Mg O, or a mixture(Ca O + Mg O + Talc) or Mgbearing Fe Si, they protected the graphite shape, improving graphite nodularity, at the metal – mould interface, and so decreased the average layer thickness in FRS-PTSA moulds. Fe Si Mg was highly efficient in minimizing the casting skin by improving graphite nodularity. It is presumed that the Mg O or(Mg O + Ca O + Talc) based coatings acted to remove any S released by the mould media. The Mg-Fe Si coatings also reacted with S from the mould but additionally supplemented the Mg nodularising potential prior to solidification. This dual activity is achievable with coatings containing active magnesium derived from fine Mg-Fe Si materials.展开更多
Moulds, notably Stachybotrys chartarum (atra), are constant contributors to air pollution particularly to air quality in buildings. The spores themselves or their volatile organic products are present in variable amou...Moulds, notably Stachybotrys chartarum (atra), are constant contributors to air pollution particularly to air quality in buildings. The spores themselves or their volatile organic products are present in variable amounts in almost all environments, particularly in buildings affected by flooding. These moulds and products can account for the sick building syndrome and have been tied to such occurrences as the outbreak of pulmonary hemosiderosis and hemorrhage in infants in Cleveland, Ohio. The present study was designed to investigate the effects of S. chartarum extracts on surfactant protein expression, surfactant quality and cell survival in the developing lung. S. chartarum extracts were incubated with cultures of several cell types;isolated fetal lung type II cells and fetal lung fibroblasts, and human lung A549 cells, a continuously growing cell line derived from surfactant producing type II alveolar cells. MTT formazan assays were employed to test cell viability. The synthesis and release of the predominant surfactant protein A (SP-A), which is involved in the regulation of surfactant turnover and metabolism, and surfactant protein B (SP-B) involved in shuttling phospholipids between surfactant subcompartments was also assessed. Antibodies to these proteins and western blotting results were used to assess the quantity of protein produced by the various cell types. A novel approach utilizing captive bubble surfactometry was employed to investigate the quality of surfactant in terms of surface tension and bubble volume measurements. Electron microscopy was used to examine changes in cellular structure of control and S. chartarum-treated cells. Results of the study showed that exposure to the S. chartarum extracts had deleterious effects on fetal lung epithelial cell viability and their ability to produce pulmonary surfactant. S. chartarum extracts also induced deleterious changes to the developing fetal lung cells in terms of expression of SP-A and SP-B as well as to the surface tension reducing abilities of the pulmonary surfactant. Ultrastructurally, spore toxin associated changes were apparent in the isolated lung cells most notably in the lamellar bodies of fetal rat lung alveolar type II and human A549 cells. This study has demonstrated the potential damage to surfactant production and function which may be induced by inhaling S. chartarum toxins.展开更多
文摘The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.
文摘Introduction: During postmastectomy radiotherapy (PMRT), it is recommended to boost the postmastectomy surgical scar with additional 10 Gy in 5 fractions in the patients with close or positive surgical margins. The electron beam therapy, though cumbersome, is usually preferred since it has the desired rapid fall of a dose beyond R85. An alternative but easier and reproducible treatment method for PMRT surgical scar boost using 3D CT image-based HDR surface mould brachytherapy is introduced and analyses of the target coverage and dose nearby organs-at-risk (OARs) using this method are evaluated in this study. Methods and Materials: This study includes twelve patients (five left-sided and seven right-sided chest wall), who were planned and treated with CT-image based surface mould HDR brachytherapy for chest wall scar boost (CWB) using Catheter Flap SetTM (Varian Medical Systems, USA) that were given concurrently during external beam radiotherapy (EBRT) treatments. Since no guidelines are available for delineating clinical target volume (CTV) structure to be used for postmastectomy scar boost, the CTV in this study was a uniform 5-mm thick volume drawn at 5 mm beneath the skin (CTVhdr_evl) and its extent was made conforming to the boost area marked on the skin and made visible in CT images by radiopaque wires. Results: Prescribed dose (PD) to CTVhdr_evl is 7.5 Gy in 3 fractions, and 2.5 Gy per fraction. The CTVhdr_evl volume receives the PD with mean V100%, V98% and V95% values which are 98.57%, 99.63% and 100% respectively. The mean dose for heart (MHD) is 2.71 Gy in left-sided CWB and 1.80 Gy in right-sided CWB plans. Mean lung dose (MLD) is 2.48 Gy for ipsilateral lung and 0.76 Gy for contralateral lung. Maximum dose to contralateral breast is 4.93 Gy and the mean dose is 0.79 Gy. The mean percent dose to the skin volume overlying the CTVhdr_evl is 138.6% and 3.7% of skin volume received 200% of the PD. Conclusion: The 3D image-based HDR surface mould achieved good CTV coverage with acceptable doses to OARs. Patient preparation, treatment planning, and execution in this method are less cumbersome and reproducible. Thus surface mould using flap applicator can be used whenever postmastectomy surgical scar boost is required.
文摘On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face temperature of mold insert was increased from 0.3 ℃ to 59.7 ℃ for chi lled air. For the similar grinding conditions with the coolant fluid an increase from 0.9 ℃ to 14.4 ℃ was recorded. With increase of specific material removal rate from 0.15 to 0.65 mm 3/mm.s, F t/F n ratio was increased from (0.2 to 0.4), (0.6 to 1.67) for wet coolant and chilled air respectively. Despite of high F t/F n ratio and ground surface temperature, chilled air method has shown a surface waviness, W t from (2 to 5.6) μm. Microstructure examination of chilled air produced ground surface was comparable to those of using coolant fluids. Surface finish, R a of (0.45~0.7) μm was achieved for mold insert . This work will enable to have clear understanding about the quantitative influe nce of chilled air as well as the clamping method against the surface waviness o f thin mold insert.
基金Supported by National Natural Science Foundation of China (Grant Nos.51105119,51235003)
文摘During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.
基金supported by NCRC(National Core Research Center)program of the Ministry of Education,Science and Technology(2010-0008-277)"Development of next generation multi-functional machining systems for eco/bio components" project of ministry of knowledge economy
文摘Ultra-precision diamond machining with piezoelectric-assisted fast tool servo (FTS) was used to produce various free-form surfaces.A low cost,rapid and large area fabrication of uniform hydrophobic surface at room temperature which transfers the FTS fabricated sinusoidal grid surface to the flat film with UV-moulding process was described.A piezoelectric-assisted FTS with high band width of 2 kHz,travel range up to 16 μm and the compact mechanism structure was designed for the sinusoidal grid surface machining and the dynamic performance testing of FTS was described in detail.Machining results indicate that the dimensions of sinusoidal grid change with the variation of the FTS machining condition.Wetting properties of UV-moulded surface were evaluated,the best contact angle was measured to be 120.5° on the sinusoidal grid surface with profile wavelength of 350 μm and peak-to-valley amplitude of about 16 μm.
基金funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour,Family and Social Protection through the Financial Agreement POSDRU/6/1.5/S/19
文摘The relative performance of coatings for furan resin sand moulds [P-toluol sulphonic acid(PTSA) as hardener] [FRS-PTSA moulds], was compared by analyzing the surface layer for degenerated graphite in Mg treated iron with 0.020 wt.% to 0.054 wt.% Mgres. It was found that the iron nodularising potential(Mg, Ce, La content) and whether the mould coatings contained S, or were capable of desulphurizing were important factors. These moulds have S in the PTSA binder, which aggravates graphite degeneration in the surface layer, depending strongly on the Mgres with lower Mgres increasing the layer thickness. The application of a mould coating strongly influenced graphite deterioration in the surface layer of castings. It either promoted graphite degeneration to less compact morphologies when using S-bearing coatings, or conversely, limited the surface layer thickness using desulphurization type coatings. Independently of the S-source at the metal – mould interface, the presence of sulphur had an adverse effect on graphite quality at the surface of Mg-treated irons, but its negative effect could also reach the graphite phase within the casting section. If the coatings employed desulphurization materials, such as Mg O, or a mixture(Ca O + Mg O + Talc) or Mgbearing Fe Si, they protected the graphite shape, improving graphite nodularity, at the metal – mould interface, and so decreased the average layer thickness in FRS-PTSA moulds. Fe Si Mg was highly efficient in minimizing the casting skin by improving graphite nodularity. It is presumed that the Mg O or(Mg O + Ca O + Talc) based coatings acted to remove any S released by the mould media. The Mg-Fe Si coatings also reacted with S from the mould but additionally supplemented the Mg nodularising potential prior to solidification. This dual activity is achievable with coatings containing active magnesium derived from fine Mg-Fe Si materials.
文摘Moulds, notably Stachybotrys chartarum (atra), are constant contributors to air pollution particularly to air quality in buildings. The spores themselves or their volatile organic products are present in variable amounts in almost all environments, particularly in buildings affected by flooding. These moulds and products can account for the sick building syndrome and have been tied to such occurrences as the outbreak of pulmonary hemosiderosis and hemorrhage in infants in Cleveland, Ohio. The present study was designed to investigate the effects of S. chartarum extracts on surfactant protein expression, surfactant quality and cell survival in the developing lung. S. chartarum extracts were incubated with cultures of several cell types;isolated fetal lung type II cells and fetal lung fibroblasts, and human lung A549 cells, a continuously growing cell line derived from surfactant producing type II alveolar cells. MTT formazan assays were employed to test cell viability. The synthesis and release of the predominant surfactant protein A (SP-A), which is involved in the regulation of surfactant turnover and metabolism, and surfactant protein B (SP-B) involved in shuttling phospholipids between surfactant subcompartments was also assessed. Antibodies to these proteins and western blotting results were used to assess the quantity of protein produced by the various cell types. A novel approach utilizing captive bubble surfactometry was employed to investigate the quality of surfactant in terms of surface tension and bubble volume measurements. Electron microscopy was used to examine changes in cellular structure of control and S. chartarum-treated cells. Results of the study showed that exposure to the S. chartarum extracts had deleterious effects on fetal lung epithelial cell viability and their ability to produce pulmonary surfactant. S. chartarum extracts also induced deleterious changes to the developing fetal lung cells in terms of expression of SP-A and SP-B as well as to the surface tension reducing abilities of the pulmonary surfactant. Ultrastructurally, spore toxin associated changes were apparent in the isolated lung cells most notably in the lamellar bodies of fetal rat lung alveolar type II and human A549 cells. This study has demonstrated the potential damage to surfactant production and function which may be induced by inhaling S. chartarum toxins.