By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by...By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.展开更多
基金Supported by China Postdoctoral Science Foundation(No.20060390660)Science and Technology Development Plan of Tianjin(No.06YFGZGX05600)+1 种基金Scientific Research Foundation of Liu Hui Center for Applied MathematicsNankai University-Tianjin University.
文摘By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.