Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was propos...Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was proposed.The mapping method between component parameters and pseudo-density values was established.An analytical solution for the sensitivity of pseudo-density to component parameters was given.The conjugate heat transfer function with the shallow channel approximation term was solved through the pseudo-density information.In the optimization example,circular components were selected,and the position and the size of solid components were chosen as design variables.In order to eliminate calculation errors caused by pseudo-density,an optimized pseudo-density field was converted into the result based on parametric components.Compared to the reference motor radiator,the average surface temperature rise of the optimized water-cooling motor radiator is reduced by 22.4%,which verifies the feasibility and effectiveness of the proposed method.展开更多
The hypervapotron(HV),as an enhanced heat transfer technique,will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels.W-Cu brazing technology has been develope...The hypervapotron(HV),as an enhanced heat transfer technique,will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels.W-Cu brazing technology has been developed at SWIP(Southwestern Institute of Physics),and one W/CuCrZr/316 LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux(HHF) tests.Before that a relevant analysis was carried out to optimize the structure of divertor component elements.ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations.Commercial code FE-SAFE was adopted to compute the fatigue life of the component.The tile size,thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor(ITER) loading conditions were simulated.One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP,where ITER-like flat-tile divertor components are adopted.This optimized design is expected to supply valuable data for HL-2M tokamak.展开更多
In this study,structural theory was used to examine the geometric configuration of channels embedded inside an object in the presence of internal heat generation for cooling by a heat transfer mechanism.The growth and...In this study,structural theory was used to examine the geometric configuration of channels embedded inside an object in the presence of internal heat generation for cooling by a heat transfer mechanism.The growth and development of gas transmission lines and the lack of up-to-date integrated information systems have made the design and maintenance of pipelines,as well as the handling of problems caused by various accidents in the pipeline,very complex in many cases.Using accurate descriptive and spatial information in tolls on gas transmission line maps such as pipes,booster stations,valves,and forks in a spatial reference database can engage planners,operators,and paramedics in a variety of management.They are used to help in the direction of optimal and purposeful management.Therefore,in this paper,by considering appropriate laboratory conditions and numerical experiments and calculations,it is possible to determine the optimal attraction of duct holes for cooling components of the gas transmission system,so that the industry can produce and developed gas transmission without incident.In this study,in addition to studying the geometric characteristics of channel spacing and their length,the dimensions of a specific channel for reducing the maximum produced temperature are also discussed.展开更多
Modern gas turbines work under demanding high temperatures, high pressures, andhigh rotational speeds. In order to ensure durable and reliable operation, effective cooling mea-sures must be applied to the high-tempera...Modern gas turbines work under demanding high temperatures, high pressures, andhigh rotational speeds. In order to ensure durable and reliable operation, effective cooling mea-sures must be applied to the high-temperature rotating components, including turbine bladesand turbine disks. Cooling technology, however, is one of the most challenging problems inthis field. The present work reviews the current state of cooling technology research, at boththe fundamental science and engineering implementation levels, including modeling and simu-lation, experiments and diagnostics, and cooling technologies for blades and disks. In numericalsimulation, the RANS approach remains the most commonly used technique for flow-dynamicsand heat-transfer simulations. Much attention has been given to the development of improvedturbulence modeling for flows under rotation. For measurement and diagnostics, advancedinstrumentation and rotating-flow test facilities have been developed and valuable experimentaldata obtained. Detailed velocity and temperature distributions in rotating boundary layers havebeen obtained at scales sufficient to resolve various underlying mechanisms. Both isothermaland non-isothermal conditions have been considered, and the effects of Coriolis and buoyancyforces on flow evolution and heat transfer quantitatively identified. Cooling technologies havebeen improved by optimizing cooling passage dsigns, especially for curved configurations un-der rotation. Novel methods such as lamellar cooling and micro-scale cooling were proposed,and their effectiveness evaluated. For disk/cavity cooling, efforts were mainly focused on rotor-stator systems, with special attention given to the position of air injection into disks.展开更多
基金Supported by the National Natural Science Foundation of China(51677104)。
文摘Focusing on the design problem of high-performance radiators for planar motors in the wafer stage of the lithography machine,a thermal-fluid coupling optimization scheme based on parametric solid components was proposed.The mapping method between component parameters and pseudo-density values was established.An analytical solution for the sensitivity of pseudo-density to component parameters was given.The conjugate heat transfer function with the shallow channel approximation term was solved through the pseudo-density information.In the optimization example,circular components were selected,and the position and the size of solid components were chosen as design variables.In order to eliminate calculation errors caused by pseudo-density,an optimized pseudo-density field was converted into the result based on parametric components.Compared to the reference motor radiator,the average surface temperature rise of the optimized water-cooling motor radiator is reduced by 22.4%,which verifies the feasibility and effectiveness of the proposed method.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB110001 and 2011GB110004)
文摘The hypervapotron(HV),as an enhanced heat transfer technique,will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels.W-Cu brazing technology has been developed at SWIP(Southwestern Institute of Physics),and one W/CuCrZr/316 LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux(HHF) tests.Before that a relevant analysis was carried out to optimize the structure of divertor component elements.ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations.Commercial code FE-SAFE was adopted to compute the fatigue life of the component.The tile size,thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor(ITER) loading conditions were simulated.One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP,where ITER-like flat-tile divertor components are adopted.This optimized design is expected to supply valuable data for HL-2M tokamak.
基金The article was prepared as part of the state task“Research and development of complex energy-saving and thermoelectric regenerative systems”Application No.2019–1497,Subject No.FZWG-2020-0034.
文摘In this study,structural theory was used to examine the geometric configuration of channels embedded inside an object in the presence of internal heat generation for cooling by a heat transfer mechanism.The growth and development of gas transmission lines and the lack of up-to-date integrated information systems have made the design and maintenance of pipelines,as well as the handling of problems caused by various accidents in the pipeline,very complex in many cases.Using accurate descriptive and spatial information in tolls on gas transmission line maps such as pipes,booster stations,valves,and forks in a spatial reference database can engage planners,operators,and paramedics in a variety of management.They are used to help in the direction of optimal and purposeful management.Therefore,in this paper,by considering appropriate laboratory conditions and numerical experiments and calculations,it is possible to determine the optimal attraction of duct holes for cooling components of the gas transmission system,so that the industry can produce and developed gas transmission without incident.In this study,in addition to studying the geometric characteristics of channel spacing and their length,the dimensions of a specific channel for reducing the maximum produced temperature are also discussed.
文摘Modern gas turbines work under demanding high temperatures, high pressures, andhigh rotational speeds. In order to ensure durable and reliable operation, effective cooling mea-sures must be applied to the high-temperature rotating components, including turbine bladesand turbine disks. Cooling technology, however, is one of the most challenging problems inthis field. The present work reviews the current state of cooling technology research, at boththe fundamental science and engineering implementation levels, including modeling and simu-lation, experiments and diagnostics, and cooling technologies for blades and disks. In numericalsimulation, the RANS approach remains the most commonly used technique for flow-dynamicsand heat-transfer simulations. Much attention has been given to the development of improvedturbulence modeling for flows under rotation. For measurement and diagnostics, advancedinstrumentation and rotating-flow test facilities have been developed and valuable experimentaldata obtained. Detailed velocity and temperature distributions in rotating boundary layers havebeen obtained at scales sufficient to resolve various underlying mechanisms. Both isothermaland non-isothermal conditions have been considered, and the effects of Coriolis and buoyancyforces on flow evolution and heat transfer quantitatively identified. Cooling technologies havebeen improved by optimizing cooling passage dsigns, especially for curved configurations un-der rotation. Novel methods such as lamellar cooling and micro-scale cooling were proposed,and their effectiveness evaluated. For disk/cavity cooling, efforts were mainly focused on rotor-stator systems, with special attention given to the position of air injection into disks.