In this remark,we first simply survey the important results on component factors in graphs.Then,we focus on the binding number condition of component factors in some special settings.The main contributions in this rem...In this remark,we first simply survey the important results on component factors in graphs.Then,we focus on the binding number condition of component factors in some special settings.The main contributions in this remark are two folded:(1)we reveal that the existence of some special component factors is equal to some specific binding number conditions;(2)the parameter conditions for a graph G with a P≥3-factor are determined.展开更多
Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionalit...Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.展开更多
An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence exc...An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence excitation-emission matrix (EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis (BDA). Then the reference fluo-rescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios (CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacil-lariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.展开更多
The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the compon...The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.展开更多
Trace metals in PM2.5 were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5 samples were collected concurrently at both sites....Trace metals in PM2.5 were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5 samples were collected concurrently at both sites. Mass concentrations of eleven trace metals (i.e., Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, and Pb) and one metalloid (i.e., As) were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The result shows that mass concentrations of PM2.5 (130μg/m3) and trace metals (4.03 μg/m3) at the industrial site were 1.3 times and 1.7 times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Fe concentrations were the highest among all the measured trace metals at both sites, with concentrations of 1.04 ixg/m 3 at the urban site and 2.41 Itg/m3 at the industrial site, respectively. In addition, Pb showed the highest enrichment factors at both sites, suggesting the emissions from anthropogenic activities existed around the city. Correlation coefficient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular traffic and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the transmission electron microscopy analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have different toxic abilities compared with externally mixed trace metals.展开更多
基金the National Natural Science Foundation of China(No.11761083).
文摘In this remark,we first simply survey the important results on component factors in graphs.Then,we focus on the binding number condition of component factors in some special settings.The main contributions in this remark are two folded:(1)we reveal that the existence of some special component factors is equal to some specific binding number conditions;(2)the parameter conditions for a graph G with a P≥3-factor are determined.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2019EEEVL0505,2019A02 and 2019B02。
文摘Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.
基金The National Natural Science Foundation of China under contract Nos 41376106 and 41276069
文摘An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence excitation-emission matrix (EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis (BDA). Then the reference fluo-rescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios (CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacil-lariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.
基金This work was financially supported by National Key R&D Plan(2016YFC0701807).
文摘The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.
基金supported by the National Basic Research Program(973)of China(No.2011CB403401)the National Natural Science Foundation of China(No.41105088,41275141)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2011DQ001)the State Key Laboratory for Coal Resources and Safe Mining(No.SKLCRSM11KFB03)
文摘Trace metals in PM2.5 were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5 samples were collected concurrently at both sites. Mass concentrations of eleven trace metals (i.e., Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, and Pb) and one metalloid (i.e., As) were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The result shows that mass concentrations of PM2.5 (130μg/m3) and trace metals (4.03 μg/m3) at the industrial site were 1.3 times and 1.7 times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Fe concentrations were the highest among all the measured trace metals at both sites, with concentrations of 1.04 ixg/m 3 at the urban site and 2.41 Itg/m3 at the industrial site, respectively. In addition, Pb showed the highest enrichment factors at both sites, suggesting the emissions from anthropogenic activities existed around the city. Correlation coefficient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular traffic and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the transmission electron microscopy analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have different toxic abilities compared with externally mixed trace metals.