The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment o...The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0.Healthcare IoT systems are the emergence of this foresight.The communication systems between the sensing nodes and the processors;and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies.At present,many new technologies supplement these empowering technologies.So,in this research work,a practical feature extraction and classification technique is suggested for handling data acquisition besides data fusion to enhance treatment-related data.In the initial stage,IoT devices are gathered and pre-processed for fusion processing.Dynamic Bayesian Network is considered an improved balance for tractability,a tool for CDF operations.Improved Principal Component Analysis is deployed for feature extraction along with dimension reduction.Lastly,this data learning is attained through Hybrid Learning Classifier Model for data fusion performance examination.In this research,Deep Belief Neural Network and Support VectorMachine are hybridized for healthcare data prediction.Thus,the suggested system is probably a beneficial decision support tool for multiple data sources prediction and predictive ability enhancement.展开更多
The objective was to investigate the effects of volatile components in Jiawei Wendan prescription on autistic behavior in rats,to analyze the volatile constituents and then to explore its effective components based on...The objective was to investigate the effects of volatile components in Jiawei Wendan prescription on autistic behavior in rats,to analyze the volatile constituents and then to explore its effective components based on the treatment of autism.The pregnant mice were divided into two groups according to the method that Schneider used.展开更多
文摘The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0.Healthcare IoT systems are the emergence of this foresight.The communication systems between the sensing nodes and the processors;and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies.At present,many new technologies supplement these empowering technologies.So,in this research work,a practical feature extraction and classification technique is suggested for handling data acquisition besides data fusion to enhance treatment-related data.In the initial stage,IoT devices are gathered and pre-processed for fusion processing.Dynamic Bayesian Network is considered an improved balance for tractability,a tool for CDF operations.Improved Principal Component Analysis is deployed for feature extraction along with dimension reduction.Lastly,this data learning is attained through Hybrid Learning Classifier Model for data fusion performance examination.In this research,Deep Belief Neural Network and Support VectorMachine are hybridized for healthcare data prediction.Thus,the suggested system is probably a beneficial decision support tool for multiple data sources prediction and predictive ability enhancement.
文摘The objective was to investigate the effects of volatile components in Jiawei Wendan prescription on autistic behavior in rats,to analyze the volatile constituents and then to explore its effective components based on the treatment of autism.The pregnant mice were divided into two groups according to the method that Schneider used.