The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic p...The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic processes based on the component reordering procedure and the visibility graph algorithm. It is found that time series and their reordered components will show diverse characteristics in the 'visibility domain'. For chaotic series, there are huge differences between the degree distribution obtained from the original series and that obtained from the corresponding reordered component. For correlated stochastic series, there are only small differences between the two degree distributions. For uncorrelated stochastic series, there are slight differences between them. Based on this discovery, the well-known Kullback Leible divergence is used to quantify the difference between the two degree distributions and to distinguish between chaotic systems, correlated and uncorrelated stochastic processes. Moreover, one chaotic map, three chaotic systems and three different stochastic processes are utilized to illustrate the feasibility and effectiveness of the proposed method. Numerical results show that the proposed method is not only effective to distinguish between chaotic systems, correlated and uncorrelated stochastic processes, but also easy to operate.展开更多
Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload wat...Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload water distribution networks can be treated as the slow transient flow which belongs to the unsteady flow. This paper analyzes the multi-loops network slow transient model based on graph theory,and the link flow matrix is treated as the variables of the discrete solution model to simulate the process of the slow transient flow in the network. With the simulation of hydraulic regime in an actual pipe network,the changing laws of the flow in the pipes,nodal hydraulic heads and other hydraulic factors with the passage of time are obtained. Since the transient processes offer much more information than a steady process,the slow transient theory is not only practical on analyzing the hydraulic condition of the network,but also on identifying hydraulic resistance coefficients of pipes and detecting the leakage in networks.展开更多
Different methods for revising propositional knowledge base have been proposed recently by several researchers, but all methods are intractable in the general case. For practical application, this paper presents a rev...Different methods for revising propositional knowledge base have been proposed recently by several researchers, but all methods are intractable in the general case. For practical application, this paper presents a revision method in special case, and gives a corresponding polynomial algorithm as well as its parallel version on CREW PRAM.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No U1530126
文摘The identification between chaotic systems and stochastic processes is not easy since they have numerous similarities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic processes based on the component reordering procedure and the visibility graph algorithm. It is found that time series and their reordered components will show diverse characteristics in the 'visibility domain'. For chaotic series, there are huge differences between the degree distribution obtained from the original series and that obtained from the corresponding reordered component. For correlated stochastic series, there are only small differences between the two degree distributions. For uncorrelated stochastic series, there are slight differences between them. Based on this discovery, the well-known Kullback Leible divergence is used to quantify the difference between the two degree distributions and to distinguish between chaotic systems, correlated and uncorrelated stochastic processes. Moreover, one chaotic map, three chaotic systems and three different stochastic processes are utilized to illustrate the feasibility and effectiveness of the proposed method. Numerical results show that the proposed method is not only effective to distinguish between chaotic systems, correlated and uncorrelated stochastic processes, but also easy to operate.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50908064 and 51208158)the 46thChina Postdoctoral Science Foundation(Grant No.20090460912)
文摘Urban water supply network is a modern urban survival and development of the infrastructure of a city,and its normal running conditions have important significance. The actual hydraulic process in the variableload water distribution networks can be treated as the slow transient flow which belongs to the unsteady flow. This paper analyzes the multi-loops network slow transient model based on graph theory,and the link flow matrix is treated as the variables of the discrete solution model to simulate the process of the slow transient flow in the network. With the simulation of hydraulic regime in an actual pipe network,the changing laws of the flow in the pipes,nodal hydraulic heads and other hydraulic factors with the passage of time are obtained. Since the transient processes offer much more information than a steady process,the slow transient theory is not only practical on analyzing the hydraulic condition of the network,but also on identifying hydraulic resistance coefficients of pipes and detecting the leakage in networks.
文摘Different methods for revising propositional knowledge base have been proposed recently by several researchers, but all methods are intractable in the general case. For practical application, this paper presents a revision method in special case, and gives a corresponding polynomial algorithm as well as its parallel version on CREW PRAM.