期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
1
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Experimental Investigation on Promoting Effect of Composite Promoting Agents on Natural Gas Hydrate Formation 被引量:3
2
作者 Wang Shuli Wei Mingjiao +1 位作者 Li Entian Zhou Shidong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第1期20-24,共5页
An experiment on effects of composite promoting agents composed of surfactants and liquid hydrocarbons on hydrate formation was conducted and the hydrate formation temperature,pressure,induction time and rate in the p... An experiment on effects of composite promoting agents composed of surfactants and liquid hydrocarbons on hydrate formation was conducted and the hydrate formation temperature,pressure,induction time and rate in the presence of different composite promoting agent packages were measured.The surfactants used covered sodium dodecyl sulfate(SDS),sodium dodecyl benzene sulfonate(SDBS) and 2-octyl sodium dodecyl sulfate(GC20S),and the liquid hydrocarbon additives utilized included cyclopentane(CP) and methyl cyclohexane(MCH).It appeared that all these combinations of composite promoting agents could promote hydrate formation.The type II hydrate formation conditions using composite promoting agents composed of CP and GC20S were the mildest and the induction time was the shortest;whereas the type H hydrates formation conditions using composite promoting agents composed of MCH and GC20S were the mildest and the induction time was also the shortest. 展开更多
关键词 natural gas hydrates composite promoting agents phase equilibrium induction time
下载PDF
Fluxing Agents on Ceramification of Composites of MgO-Al2O3-SiO2/Boron Phenolic Resin 被引量:5
3
作者 石敏先 CHEN Xia +3 位作者 FAN Shanshan SHEN Shirley LIU Tianxiang 黄志雄 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期381-388,共8页
Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) compos... Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS/BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS/BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS/BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases. 展开更多
关键词 ceramification boron phenolic resin ceramifiable polymer composite fluxing agent
下载PDF
Screening of Composite Microbial Agents for Promoting the Decomposition of Aging Dunnage
4
作者 Yin Hongmei Xu Jun +6 位作者 Liu Biao Du Dongxia Xu Lijuan Wu Yingben Chen Wei Wang Zhen He Yuelin 《Animal Husbandry and Feed Science》 CAS 2015年第4期197-199,211,共4页
To explore the influence of microbial agems on the decomposition of aging dunnage of the fermentation bed, this paper took the aging dunnage as the raw materials, obtained microbial strains of different types through ... To explore the influence of microbial agems on the decomposition of aging dunnage of the fermentation bed, this paper took the aging dunnage as the raw materials, obtained microbial strains of different types through isolation and purification, chose dominant groups to make compound microbial agents, and adopted composting decomposition experiment. The results showed that Bacillus subtilis of different ratios was added, Trichoderma koningii and Thermo actinomycetaceac could promote the decomposition of aging dunnage, especially composite microbial agents (Kc:Kn:Gf = 1:1:1 ) had the best effect of decomposition, the high tem- perature was kept for 13 days. In the end of composting, degradation rate of cellulose, degradation rate of lignin, GI, and C/N were 47.6%, 30. 2%, 98.5%, and 18.5%. Bacillus coli was not detected. 展开更多
关键词 Fermentation bed Aging dunnage DECOMPOSITION composite microbial agents
下载PDF
Optimization of mixing speed and time to disperse the composite conductive agent composed of carbon black and graphene in lithium-ion battery slurry
5
作者 Zhilong Wang Jialong Tu +4 位作者 Xinhao Yu Feixiang Li Zhenzhen Zhao Yahui Cui Tong Zhao 《Particuology》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
This paper proposed an optimal approach to disperse the composite conductive agent which is composed of carbon black(CB)and graphene(Gr)within lithium-ion battery(LIB)slurry with different mixing speeds and mixing tim... This paper proposed an optimal approach to disperse the composite conductive agent which is composed of carbon black(CB)and graphene(Gr)within lithium-ion battery(LIB)slurry with different mixing speeds and mixing times.The internal structures of LIB slurry are characterized by Electrochemical Impedance Spectroscopy,Scanning Electron Microscopy,and Raman experiment.Initially,a composite conductive solution is prepared by mixing the composite conductive agent with NMP solvent under the conditions of five different mixing speeds n_(1)(n_(1)=1000,1100,1200,1300,1400 rpm)in the case of mixing time t_(1)=10 min.Subsequently,LIB slurry is prepared by blending the composite conductive solution,LiCoO_(2)and PVDF-NMP solution under the conditions of five different mixing speeds n_(2)(n_(2)=1000±280,1100±280,1200±280,1300±280,1400±280 rpm)in the case of mixing time t_(2)=6 min.By analyzing the internal structure of different LIB slurries,it shows that in the case of n_(1)=n_(2)=1200 rpm,a conductive network structure is well formed within LIB slurry.Additionally,in order to determine the optimal time to prepare the composite conductive solution for LIB slurry,nine different t_(1)(t_(1)=0,10,20,30,40,50,60,70,80 min)are selected.By analyzing the internal structure of different LIB slurries,a well-formed conductive network structure and a uniformly distributed composite conductive agent are deduced in LIB slurry when t_(1)=50 min.Therefore,it can be concluded that the composite conductive agent composed of CB and Gr is able to be uniformly dispersed in LIB slurry by establishing a well-formed conductive network structure under the optimal mixing speed n_(1)=n_(2)=1200 rpm and the optimal mixing time t_(1)=50 min,t_(2)=6 min.This kind of the internal structure has the potential to be used to further analyze the dispersion characterizations of LIB slurry under different composite conductive agent and CB/Gr ratios with the aim of improving the final performance of LIB. 展开更多
关键词 Lithium-ion battery slurry composite conductive agent Carbon black GRAPHENE
原文传递
The Effect of Silane Grafted Polypropylente on the Property of Different Filler/Polypropylene Composites
6
作者 仇武林 罗运军 +1 位作者 罗善国 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 1998年第4期345-350,共6页
Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat... Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite. 展开更多
关键词 silane grafted polypropylene composite macromolecular coupling agent POLYPROPYLENE
下载PDF
Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane 被引量:3
7
作者 Nan Luo Hui Zhong +2 位作者 Min Yang Xing Yuan Yaobo Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期208-217,共10页
Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced pol... Experimental design and response surface methodology(RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide(AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride)(PVDF) composite membrane(GFRP-CM). The factors considered for experimental design were the UV(ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0–0.25 wt.%,solvent of N-Dimethylacetamide(DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy(FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance(FTIR-ATR) and energy dispersive X-ray spectroscopy(EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. 展开更多
关键词 Glass fibers Polymer-matrix composites Coupling agents UV-grafting copolymerization Interfacial strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部