The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhanci...The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.展开更多
Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglo...Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.展开更多
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars
文摘The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.
基金supported by the National Natural Science Foundation of China under Grant U1960114,51774337,and U1660206the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University under Grant CSUZC201905the Fundamental Research Funds for the Central Universities of Central South University under Grant 2018zzts220.
文摘Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.