期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
1
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6Al4V alloy anodic oxidation Si C nanoparticle composite film
下载PDF
Influences of pulse frequency on formation and properties of composite anodic oxide films on Ti-10V-2Fe-3Al alloy 被引量:1
2
作者 Xu DAI Chen WEN +7 位作者 Liang WU Lei LIU Yulong WU Xingxing DING Jiahao WU Wenjun CI Aitao TANG Fusheng PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期228-242,共15页
A thick composite anodic oxide film was fabricated in an environmentally friendly malic acid electrolyte containing Poly Tetra Fluoro Ethylene(PTFE)nanoparticles on Ti-10V-2Fe-3Al alloys.The influence of pulse frequen... A thick composite anodic oxide film was fabricated in an environmentally friendly malic acid electrolyte containing Poly Tetra Fluoro Ethylene(PTFE)nanoparticles on Ti-10V-2Fe-3Al alloys.The influence of pulse frequency on the morphology,microstructure and composition of composite anodic oxide films containing PTFE nanoparticles was investigated using Field Emission Scanning Electron Microscopy(FE-SEM)equipped with Energy Dispersive Spectroscopy(EDS),Atomic Force Microscopy(AFM)and Raman spectroscopy.The tribological properties in terms of the friction coefficient,wear loss and morphology of worn surfaces were measured by ball-ondisc tests.The electrochemical property was evaluated by potentiodynamic polarization.The results indicated that the titanium dioxide of composite anodic oxide films transformed from anatase to rutile with the change of pulse frequency,which could result from the electrochemical dynamic equilibrium.The combination of PTFE nanoparticles and malic acid electrolyte molecules can influence the energy fluctuation of electrochemical equilibrium and formation of composite anodic oxide films.Moreover,composite anodic oxide films fabricated under the condition of 1.0–2.0 Hz exhibited the best wear resistance and corrosion property.The schematic diagram of the film formation and PTFE nanoparticles spreading process under different frequencies was elucidated. 展开更多
关键词 composite anodic oxide film Poly Tetra Fluoro Ethylene(PTFE) Pulse frequency Titanium alloy Wear resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部