期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:7
1
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
Structural Performance of Light Weight Multicellular FRP Composite Bridge Deck Using Finite Element Analysis 被引量:1
2
作者 Woraphot Prachasaree Pongsak Sookmanee 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期939-943,共5页
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to ob... Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work. 展开更多
关键词 fiber reinforced polymer (FRP) composites bridge deck finite element
下载PDF
Fatigue evaluation of steel-concrete composite deck in steel truss bridge—A case study
3
作者 Huating CHEN Xianwei ZHAN +1 位作者 Xiufu ZHU Wenxue ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第10期1336-1350,共15页
An innovative composite deck system has recently been proposed for improved structural performance.To study the fatigue behavior of a steel-concrete composite bridge deck,we took a newly-constructed rail-cum-road stee... An innovative composite deck system has recently been proposed for improved structural performance.To study the fatigue behavior of a steel-concrete composite bridge deck,we took a newly-constructed rail-cum-road steel truss bridge as a case study.The transverse stress history of the bridge deck near the main truss under the action of a standard fatigue vehicle was calculated using finite element analysis.Due to the fact that fatigue provision remains unavailable in the governing code of highway concrete bridges in China,a preliminary fatigue evaluation was conducted according to the fib Model Code.The results indicate that flexural failure of the bridge deck in the transverse negative bending moment region is the controlling fatigue failure mode.The fatigue life associated with the fatigue fracture of steel reinforcement is 56 years.However,while the top surface of the bridge deck concrete near the truss cracks after just six years,the bridge deck performs with fatigue cracks during most of its design service life.Although fatigue capacity is acceptable under design situations,overloading or understrength may increase its risk of failure.The method presented in this work can be applied to similar bridges for preliminary fatigue assessment. 展开更多
关键词 Fatigue assessment composite bridge deck rail-cum-road bridge fatigue stress analysis Model Code
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部